CHAPTER-3 MATRICES 01 MARK TYPE QUESTIONS

r	UI WARK TYPE QUESTIONS	
Q. NO	QUESTION	MARK
1.	In a certain city there are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1	1
	section officer. Express the given information as a column matrix.	
	[15] [15] [6] [1]	
	A) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ B) $\begin{bmatrix} 6 \\ 1 \end{bmatrix}$ C) $\begin{bmatrix} 15 \\ 1 \end{bmatrix}$ D) $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$	
2.	If $A = \{a_{ij}\}$ is a square matrix of order 2 such that $a_{ij} = \begin{cases} 1, when \ i \neq j \\ 0, when \ i = j \end{cases}$	1
	$ \begin{array}{c} A \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \qquad \qquad B \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \qquad C \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	
		-
3.	Let A be a skew symmetric matrix of order 3. If $ A =x$, then (2023) ^x is	1
	A) 2023 B) 1/2023 C) 2023 ² D) 1	
4.	If a matrix A = [1 2 3], then the matrix AA^T is :	1
	A) 14 B) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ C) $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$ D)[14]	
	A) 14 B) 0 2 0 C) 2 3 1 D)[14]	
		4
5.	A and B are two matrices of order 3x2 and 3x2 then the order of the matrix AB ^t .	1
	A) 3x3 B) 2x2 C) 2x3 D) Not define	
6.	If for a square matrix A, $A^2 - 3A + I = 0$ and $A^{-1} = xA + yI$, then the value of x+y is :	1
	A) -2 B) 2 C) 3 D) -3	
7.	If $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then A^{2023} is equal to	1
	[0, 0]	
	A) $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ B) $\begin{bmatrix} 0 & 2023 \\ 0 & 0 \end{bmatrix}$ C) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ D) $\begin{bmatrix} 2023 & 0 \\ 0 & 2023 \end{bmatrix}$	
8.	Number of symmetric matrices of order 3x3 with each entry 1or-1 is	1
0.	A) 256 B) 64 C) 512 D) 4	-
9.		1
9.	If $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & a & 1 \end{bmatrix}$ is a non singular matrix $a \in A$, then the set A is	1
	$\begin{bmatrix} 2 & 3 \\ 3 & a \end{bmatrix}$ is a non-singular matrix $a \in A$, then the second	
	A) R B) $\{0\}$ C) $\{4\}$ D) R- $\{4\}$	
10.		1
	If $\begin{bmatrix} 2 & 0 \\ 5 & 4 \end{bmatrix} = P + Q$, where P is a symmetric and Q is a skew symmetric matrix, then Q is	
	equal to	
	$\begin{bmatrix} 2 & 5/2 \end{bmatrix}_{B} \begin{bmatrix} 0 & -5/2 \end{bmatrix}_{C} \begin{bmatrix} 0 & 5/2 \end{bmatrix}$	
	equal to A) $\begin{bmatrix} 2 & 5/2 \\ 5/2 & 4 \end{bmatrix}$ B) $\begin{bmatrix} 0 & -5/2 \\ 5/2 & 0 \end{bmatrix}$ C) $\begin{bmatrix} 0 & 5/2 \\ -5/2 & 0 \end{bmatrix}$ D) $\begin{bmatrix} 2 & -5/2 \\ 5/2 & 4 \end{bmatrix}$	
	$\begin{bmatrix} 2 & -5/2 \end{bmatrix}$	
	5 , 5 , 2 4	
11.	If O(A)=2×3, O(B)=3×2, O(C)= 3×3 then which of the following is not defined?	1
	i)CB+A' ii)C(A+B')' iii)BAC iv)C(A+B')	
L		

-		T
12.	If $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{bmatrix}$ what is the value of adjA ?	1
	i)36 ii)72 iii)144 iv) none	
13.	The matrix A has x rows and (x+5) columns and matrix B has y rows and (11-y) column. Both	1
	AB and BA exist then the value of x and y are-	
	i) 8,3 ii)3,4 iii)3,8 iv)8,8	
14.	i) 8,3 ii)3,4 iii)3,8 iv)8,8 If the matrix $\begin{bmatrix} 1 & 3 & a + 2 \\ 2 & 4 & 8 \\ 3 & 5 & 10 \end{bmatrix}$ is singular then what is	1
	If the matrix 2 4 8 is singular then what is	
	the value of a?	
	i)-2 ii) 4 iii) 2 iv) -4 If I is a unit matrix of order 10 then the determinant of I is equal to	-
15.	If I is a unit matrix of order 10 then the determinant of I is equal to	1
	i)10 ii)1 iii)1/10 iv)9	
16.	What is the total number of possible matrices of order 3x3 with each entry 2 and 0?	1
	(1)9 $(1)27$ $(11)81$ $(1)512$	
17.	i)9 ii)27 iii)81 iv)512 If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the value of k ,a, b are respectively	1
	i)-6, -12, -18 ii)-6,4,9	
	iii)-649 iv)-6.12.18	
18.	i)-6, -12, -18 ii)-6, 4, 9 ii)-6, 4, 9 iv)-6, 12, 18 If $A = \begin{bmatrix} 4 & x + 2 \\ 2x - 3 & x + 2 \end{bmatrix}$ is a symmetric matrix , then x=	1
	If $A = \begin{bmatrix} 2x - 3 & x + 2 \end{bmatrix}$ is a symmetric matrix, then $x = \begin{bmatrix} x - 3 & x + 2 \end{bmatrix}$	
	i)3 ii)2 iii)4 iv)5	
19.	if A is a square matrix of order 4 and I is unit matrix then which of the following is true?	1
	i)det(2A) = 2detA ii) det(-A) = -det A	
	iii)det(A+I) = det A+I iv)det(2A)= 16det(A)	
20.	If A is a non-singular matrix satisfying A^2 -A+2I=0, then A^{-1} =	1
	i)I-A ii) $\frac{1}{2}(I-A)$ iii)I+A	
	$ iv ^{\frac{1}{2}}(I+A)$	
21.	If the order of matrix A is $m \times p$. And the order of B is	
21.	$p \times n$. Then the order of matrix AB is?	
	$(a) n \times p$	
	$(b) m \times n$	1
	(c) n × p	-
	(d) n × m	
22.	If a matrix has 6 elements, then number of possible orders of the matrix can be	
	(a) 2	1
	(b) 4	1
	(c) 3 (d) 6	
L		1

23.	If $A = diag (3, -1)$, then matrix A is	
	(a) $\begin{bmatrix} 0 & 3 \\ 2 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix}$	
	$ (c) \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} $	1
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
	(+ 25)2	
24.	If A = [a _{ij}] is a 2 × 3 matrix, such that $a_{ij} = \frac{(-i+2j)^2}{5}$	
	then a ₂₃ is	
		1
	(a) $\frac{1}{5}$ (b) $\frac{2}{5}$ (c) $\frac{9}{5}$ (d) $\frac{16}{5}$	1
	5 5 5 5	
25.	If A = diag. $[5, -2, 7]$; B = diag. $[7, 8, 5]$, then $3A - 2B =$	
		1
	(a) diag. [1, -22, -11] (c) diag. [-1, 22, -11]	1
	(b) diag. [-1, -22, 11] (d) diag. [1, -22, 11]	
26.	If A is a symmetric matrix of integers with zeroes on the main diagonal, the sum of the entries of A	
	must be an	1
	a. integer b. odd integer	1
	c. even integer d. irrational number	
27.	If X is any $m \times n$ matrix such that XY and YX both defined, then Y is an a. $m \times n$ matrix b. $n \times m$ matrix	1
	c. n \times n matrix d. m \times m matrix	1
28.	If A is a square matrix of order p and if there exists another square matrix B of the same order p, such	
	that $AB = BA = I$, then	
	a. A^{-1} does not exist	1
	b. AB is defined	
	c. B is called the inverse matrix of Ad. A is not the inverse of B	
29.	The total number of elements in a matrix represents a prime number. The possible orders the matrix	
_	can have	1
	a. 2 b. 9 c. 1 d. 4	_
30.		
	Assertion (A): If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & 3 \end{bmatrix}$ then A^{-1} is a skew symmetric matrix	
	Assertion (A): If A = $\begin{bmatrix} 0 & 2 & -1 \\ -2 & 0 & 3 \\ 1 & -3 & 0 \end{bmatrix}$ then, A ⁻¹ is a skew symmetric matrix.	
		1
	 Reason(R): If A is skew symmetric matrix then A⁻¹ is skew symmetric matrix. (a) Both A and R are true and R is the correct explanation of A 	1
	(b) both A and R are true but R is not correct explanation of A	
	(c) A is true but R is false	
31.	(d) A is false but R is true	1
51.	Let A, B, C are three matrices of same order.	1

Asse Reas (a) B (b) B (c) A (d) A 32. A is 3 33. A ma 34. Tota (a) 6 35. Assu restr 36. If A i (a) 1 37. If A a a) B b) A c) 1 d) 0 38. Cons 39. If A, (A) S Iden 40. If A= a) $\frac{\pi}{6}$	 <i>q</i>, consider the following statements: ertion (A): If A = B, then AC = BC son (R): If AC = BC, then A = B both A and R are true and R is the correct explanation of A. Both A and R are true but R is not the correct explanation of A. Both A and R are true but R is not the correct explanation of A. Both A and R are true but R is not the correct explanation of A. Both A and R are true but R is not the correct explanation of A. Both A and R are true but R is not the correct explanation of A. Both A and R are true but R is not the correct explanation of A. Both A and R are true but R is not the correct explanation of A. Both A and R are true but R is not the correct explanation of A. Both A and R are true but R is not the correct explanation of A. Both A and R are true but R is not the correct explanation of A. Both A and R are true but R is not the correct explanation of A. Both A and R are true but R is not the correct explanation of A. Both A and R are true but R is not the correct explanation of A. Both A and R are true but R is false. A is false but R is true. Both A and R are true but R is true. Both A and R are true but R is true. Both A and R are true but R is true. Both A and R are true but R is true. Both A and R are true but R is true. Both A and R are true but R is true. Both A and R are true but R is true. Both A and R are true but R is true. Both A and R are true but R is true. Both A and R are true but R is true. Both A and R are true but R is true. Both A and R are true but R is true. Both A and R are true but R	1
40. Rease (a) B (b) B (b) A (c) A (c) A (d) A 32. A is a 33. A ma 34. Tota (a) 6 A 35. Assu 36. If A i (a) 1 A 37. If A a (a) 1 A 37. If A a (a) 1 A 37. If A a (a) 0 A (a) 1 A (b) A C) 1 (b) A C) 1 (b) C A (a) 0 B (b) A C) 1 (c) 1 O 38. Cons 39. If A, (A) S Iden A 40. If A= (a) $\frac{\pi}{6}$	Son (R): If AC = BC, then A = B soth A and R are true and R is the correct explanation of A. Both A and R are true but R is not the correct explanation of A. A is true but R is false. A is false but R is true. Square matrix of order 3 and $ A = 7$. Write the value of $ adj. A $. atrix has 5 elements, write all possible order it can have. I number of possible matrices of order 2 × 3 with each entry 1 or 0 is.	1
40. Rease (a) B (b) B (b) A (c) A (c) A (d) A 32. A is a 33. A ma 34. Tota (a) 6 A 35. Assu 36. If A i (a) 1 A 37. If A a (a) 1 A 37. If A a (a) 1 A 37. If A a (a) 0 A (a) 1 A (b) A C) 1 (b) A C) 1 (b) C A (a) 0 B (b) A C) 1 (c) 1 O 38. Cons 39. If A, (A) S Iden A 40. If A= (a) $\frac{\pi}{6}$	Son (R): If AC = BC, then A = B soth A and R are true and R is the correct explanation of A. Both A and R are true but R is not the correct explanation of A. So the A and R are true but R is not the correct explanation of A. A is true but R is false. A is false but R is true. Square matrix of order 3 and $ A = 7$. Write the value of $ adj. A $. Batrix has 5 elements, write all possible order it can have. I number of possible matrices of order 2 × 3 with each entry 1 or 0 is.	1
 (a) B (b) B (c) A (d) A 32. A is s 33. A ma 34. Tota (a) 6 35. Assurestr 36. If A i (a) 1 37. If A a a) B b) A c) 1 d) 0 38. Cons 39. If A, (A) S Iden 40. If A = a) $\frac{\pi}{6}$ 	both A and R are true and R is the correct explanation of A. Both A and R are true but R is not the correct explanation of A. A is true but R is false. A is false but R is true. Square matrix of order 3 and $ A = 7$. Write the value of $ adj. A $. Batrix has 5 elements, write all possible order it can have. I number of possible matrices of order 2 × 3 with each entry 1 or 0 is.	1
(b) B (c) A (d) A 32. A is s 33. A ma 34. Tota (a) 6 35. Assuration (a) 6 35. Assuration (a) 1 36. If A i (a) 1 A 37. If A a (a) 0 B b) A C) 1 (d) 0 A 38. Cons 39. If A, (A) S Iden A 40. If A= a) $\frac{\pi}{6}$ A	Both A and R are true but R is not the correct explanation of A. A is true but R is false. A is false but R is true. Square matrix of order 3 and $ A = 7$. Write the value of $ adj. A $. atrix has 5 elements, write all possible order it can have. I number of possible matrices of order 2 × 3 with each entry 1 or 0 is.	1
$\begin{array}{c} (c) A \\ (d) A \\$	is true but R is false. A is false but R is true. Square matrix of order 3 and $ A = 7$. Write the value of $ adj. A $. Atrix has 5 elements, write all possible order it can have. I number of possible matrices of order 2 × 3 with each entry 1 or 0 is.	1
(d) A 32. A is s 33. A ma 34. Tota (a) 6 35. Assurements 36. If A i (a) 1 37. If A i (a) 1 37. If A i (a) 1 37. If A i (a) 0 38. Cons 39. If A, (A) S Iden 40. If A= a) $\frac{\pi}{6}$	is false but R is true. square matrix of order 3 and A = 7. Write the value of adj. A . atrix has 5 elements, write all possible order it can have. I number of possible matrices of order 2 × 3 with each entry 1 or 0 is.	1
32. A is s 33. A ma 34. Tota 34. Tota (a) 6 35. Assurestr 36. If A i (a) 1 37. If A a (a) 1 37. If A a (a) 0 38. Cons 39. If A, (A) S Iden 40. If A= a) $\frac{\pi}{6}$ A	square matrix of order 3 and A = 7. Write the value of adj. A . atrix has 5 elements, write all possible order it can have. I number of possible matrices of order 2 × 3 with each entry 1 or 0 is.	1
33. A ma 34. Tota 35. Assurements 35. Assurements 36. If A i (a) I And the image is a strength is a strengt is a strenge strengt is a strength is a strength is a strenge st	atrix has 5 elements, write all possible order it can have. I number of possible matrices of order 2 × 3 with each entry 1 or 0 is.	1
34. Tota 35. Assures restremand 36. If A i (a) 1 (a) 1 37. If A a a) B b) A c) 1 (b) 0 38. Cons 39. If A, (A) S Iden 40. If A= a) $\frac{\pi}{6}$ (c) 1	I number of possible matrices of order 2×3 with each entry 1 or 0 is.	1 -
 (a) 6 35. Assurestr 36. If A i (a) 1 37. If A a a) B b) A c) 1 d) 0 38. Cons 39. If A, (A) S Iden 40. If A= a) ^Π/₆ 		1
 35. Assurestr 36. If A i (a) I 37. If A a a) B b) A c) 1 d) 0 38. Cons 39. If A, (A) S Iden 40. If A= a) ^Π/₆ 		1
restr 36. If A i (a) I 37. If A a a) B b) A c) 1 d) 0 38. Cons 39. If A, (A) S Iden 40. 40. If A= a) $\frac{\Pi}{6}$	b) 36 c) 32 d) 64	
restr 36. If A i (a) I 37. If A a a) B b) A c) 1 d) 0 38. Cons 39. If A, (A) S Iden 40. 40. If A= a) $\frac{\Pi}{6}$		
 36. If A i (a) I (a) I 37. If A a a) B b) A c) 1 d) 0 38. Cons 39. If A, (A) S Iden 40. If A= a) ^Π/₆ 	ime Y, W and P, are the matrices of order 3×k, n×3 and p×k. Find the	1
 (a) I 37. If A a a) B b) A c) 1 d) 0 38. Cons 39. If A, (A) S Iden 40. If A= a) ^Π/₆ 	rictions on n, k and p, so that PY+WY will be defined.	
 37. If A a a) B b) A c) 1 d) 0 38. Cons 39. If A, (A) S Iden 40. If A= a) ^Π/₆ 	s a square matrix such that $A^2=A$, then $(I + A)^2 - 3A$ is	1
 a) B b) A c) 1 d) 0 38. Cons 39. If A, (A) S Iden 40. If A= a) ^Π/₆ 	(b) 2A (c) 3I (d) A	
 a) B b) A c) 1 d) 0 38. Cons 39. If A, (A) S Iden 40. If A= a) ^Π/₆ 		
 b) A c) 1 d) 0 38. Cons 39. If A, (A) S Iden 40. If A= a) ^Π/₆ 	and B are two matrices such that $AB = B$ and $BA = A$, then B^2 is equal to	1
$ \begin{array}{c} c) 1 \\ d) 0 \\ \hline 38. \\ 39. \\ If A, \\ (A) S \\ Iden \\ \hline 40. \\ If A= \\ a) \frac{\pi}{6} \end{array} $		
 d) 0 38. Cons 39. If A, (A) S Iden 40. If A= a) π/6 		
 38. Cons 39. If A, (A) S Iden 40. If A= a) ^Π/₆ 		
 39. If A, (A) S Iden 40. If A= a) π/6 		
 39. If A, (A) S Iden 40. If A= a) π/6 		
 (A) S Iden 40. If A= a) π/6 	struct a 3x1 matrix A =[aij] whose elements aij are given by aij= $\frac{1}{2}$ -3i-j	1
$\frac{40.}{40.}$ If A=	B are symmetric matrices of same order, then AB – BA is a	1
^{40.} If A= a) $\frac{\pi}{6}$	ikew symmetric matrix (B) Symmetric matrix (C) Zero matrix (D)	
a) $\frac{\pi}{6}$	tity matrix	
a) $\frac{\pi}{6}$		
a) $\frac{\pi}{6}$	$= \begin{bmatrix} cosa - sinb \\ sinb & cosa \end{bmatrix}$, then A+A'= I, if the value of a is:	1
0	$L sinb cosa J' , 3\Pi$	
41. The	b) $\frac{\pi}{3}$ c) Π d) $\frac{3\pi}{2}$	
41. The		
The	$\begin{bmatrix} 2 & -1 & 4 \\ 1 & 0 & -1 \end{bmatrix}$	1
	matrix 1 1 () blic	
	matrix $\begin{bmatrix} 2 & -1 & 4 \\ 1 & 0 & -5 \\ -4 & 5 & 7 \end{bmatrix}$ is	
	a) A symmetric matrix	
	a) A symmetric matrix b) A skew symmetric matrix	
	a) A symmetric matrix b) A skew symmetric matrix c) A diagonal matrix	1
A III A	a) A symmetric matrix b) A skew symmetric matrix	1
A B C Non		

	B) 4	
	C) 6	
	D) 5	
43.	If matrix A is of order m ×n, and for matrix B, AB and BA both are defined, then	1
	order of matrix B is	-
	A) m ×n	
	B) n ×n	
	C) m ×n	
	D) n ×m	
44.		1
	A) all zeros	-
	B) are all equal to some scalar $k \neq 0$	
	C) can be any number	
	D) none of these	
45.		1
	If $\begin{pmatrix} y+2x & 5\\ -x & 3 \end{pmatrix} = \begin{pmatrix} 7 & 5\\ -2 & 3 \end{pmatrix}$, then the value of y is	
	A)11	
	B) 3	
	C) -3	
	D) 1	_
46.	Total no of possible matrices of order 3×3 with each entry 1 or 0 is	1
	A) 512	
	B) 64	
	C) 32	
	D) 36	
47.	If restrive A [1, 2, 2] then A A^{t} are also where A^{t} is the transmission of	1
47.	If matrix $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ then $AA^t equal to$, where A^t is the transpose of matrix A.	1
	A) [14]	
	B) [12]	
	C) 0	
	[10]	
48.	If A= $\begin{bmatrix} 0 & a \\ 0 & a \end{bmatrix}$ then A^{16} is equal to	1
	A) A	
	$B) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	
	(1, 0)	
	C) $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$	
	[12]	
49.	If A and B are symmetric matrices, then AB-BA is a	1
	A) Symmetric matrix	
	B) Skew symmetric matrix	

	C) Diagonal matrix	
	Unit matrix	
50.	If A is a square matrix such that A^2 =A, then $(I + A)^2 - 3A$ is	1
50.		1
	B) 21	
	C) 31	
	D) A	
51.	If A and B are symmetric matrices, then ABA is	1
	a) symmetric matrix b) diagonal matrix	
	c) skew - symmetric matrix	
	d) scalar matrix	
52.	[2 0 -3]	1
	If A = $\begin{bmatrix} 4 & 3 & 1 \\ -5 & 7 & 2 \end{bmatrix}$ is expressed as the sum of a symmetric and skew - symmetric matrix, then the	
	L-5 7 2] symmetric matrix is	
	$\begin{bmatrix} 2 & 2 & -4 \end{bmatrix}$	
	a) $\begin{bmatrix} 2 & 3 & 4 \\ -4 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 & -5 \end{bmatrix}$	
	$\begin{bmatrix} -4 & 4 & 2 \\ 2 & 4 & -5 \end{bmatrix}$	
	b) 0 3 7	
	b) $\begin{bmatrix} 0 & 3 & 7 \\ -3 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 4 & 4 & -8 \end{bmatrix}$	
	c) $4 6 8$	
	[1 0 0]	
	d) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
53.	$154 = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & -1 \end{bmatrix}$ then A is a	1
	If $A = \begin{bmatrix} -2 & 0 & -1 \\ 3 & 1 & 0 \end{bmatrix}$ then A is a	
	a) skew - symmetric matrix	
	b) symmetric matrix	
	c) none of these	
	d) diagonal matrix	
54.	The number of all possible matrices of order $3 imes 3$ with each entry 0 or 1 is	1
	a) 81	
	b) none of these	
	c) 512	
	d) 18	
55.		1
	If $A = \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $AB = I_3$, then x + y equals	-
	a) - 1	
	b) 0	
	c) none of these	
	d) 2	
56.	$A = [a_{ij}]_{m \times \times n}$ is a square matrix, if	1
	a) m < n	

	b) m > n	
	c) $m = n$	
	d) None of these	
57.	,	1
57.	If A = $\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, B = $\begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and (A + B) ² = A ² + B ² , then values of a and b are	T
	a) $a = 0, b = 4$	
	b) a = 1, b = 4	
	c) $a = 2, b = 4$	
	d) a = 4, b = 1	
58.	If $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then A^2 is equal to	1
	a) $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	
	b) $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$	
	c) $\begin{bmatrix} 1 & 0\\ 1 & 0 \end{bmatrix}$	
	d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
59.	If A and B are matrices of same order, then (AB' – BA') is a	1
55.		Ŧ
	a) null matrix	
	b) unit matrix	
	c) symmetric matrix	
	d) skew - symmetric matrix	
60.	If A and B are two matrices of the order $3 \times m$ and $3 \times n$, respectively, and m =	1
	n, then the order of matrix (5A – 2B) is	
	a) 3× 3	
	b) m× n	
	c) 3× n	
	d) m× 3	
61.	If a matrix has 8 elements then the total number of different orders of writing the matrices is	1
	a) 1	
	b) 2	
	c) 3	
	d) 4	
62.		1
02.	If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and n N, then A^n is equal to	1
	a. n A	
	b. 2n A c. 2 ⁿ⁻¹ A	
	$d \cdot 2^n A$	
63.	$A = [a_{ij}]_{mxn}$ is a square matrix, if	1
	a. m < n	
	b. m > n	
	c. $m = n$ d. none of these	
64.	The number of all possible matrices of order 3x3 with each entry 0 or 1 is:	1
	a. 27	

		1
	b. 18	
	c. 81	
	d. 512	
65.	$[1 0]$ $[\gamma 0]$	1
05.	If $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix}$ and $A = B^2$, then x equals	1
	a1	
	b. 1	
	c. 2	
	d2	
66.	If A is a square matrix and $A^2 = A$, then	1
	$(I + A)^2 - 3A$ is equal to:	
	a. I	
	b. A	
	c. 2A	
	d. 3I	
67.	The numbers of all possible matrices of order 2x2 with each entry 1, 2 or 3 is	1
57.	a. 12	-
	b. 64	
	c. 81	
	d. 7	
68.	If A and B are square matrices of same order, then AB - BA is a	1
	a. skew – symmetric matrix	
	b. symmetric matrix	
	c. null matrix	
	d. unit matrix	
69.	If A is a square matrix such that $A^2 = A$, then find $(2 + A)^3 - 19 A$.	1
	a. 8I	
	b. 2I	
	c. I	
	d. A	
70		1
70.	If the matrix A is both symmetric and skew symmetric matrix, then	1
	a. A is a diagonal matrix	
	b. A is a zero matrix	
	c. A is a square matrix	
	d. none of these	
71.	Radha has 3 notebooks and 2 pens, Krishna has 2 notebooks and 1 pen and Ram has 4	1
/1.	-	1
	notebooks and 2 pens. A matrix is formed with the number of notebooks and pen that the	
	three persons have in three rows and three columns. The number of elements in the matrix is	
	(a) 14 (b) 6 (c) 2 (d) 8	
72.	If 5 students have pens only, then a matrix with only one column is created which lead to the	1
	idea of a type of matrix. This matrix is known as	
	(a) Row matrix (b) column matrix (c) square matrix (d) diagonal matrix	
72		1
73.	Given that matrices A and B are of order 3 x n and m x 5 respectively, then the order of the	1
	matrix $C = 5A + 3B$ is	
	(a) 3×5 (b) 5×3 (c) 3×3 (d) 5×5	
74.	Sudha created a square matrix A such that $A^2 = A$, the	1
	$(I + A)^3 - 7A$ is equal to	
	(a) A (b) $I + A$ (c) $I - A$ (d) I	
1	$ (u) \land (v) \land (v) \land (v) \land (v) \land (u) \land (u) \land (v) \land (v)$	1

75.	Given that $A = \begin{bmatrix} a & b \\ c & -c \end{bmatrix}$ and $A^2 = 3I$, then	1
	(a) $1 + a^2 + bc = 0$ (b) $1 - a^2 - bc = 0$ (c) $3 - a^2 - bc = 0$	
	(d) $3 + a^2 + bc = 0$ (c) $1 - a^2 - bc = 0$ (c) $3 - a^2 - bc = 0$	
76.	Neha has a factory which produces shoes for boys and girls in three different price categories labelled 1, 2 and 3. The quantity produced by the factory is represented by the matrix given below Boys Girls $1 \begin{bmatrix} 80 & 40 \\ 2 & 65 & 70 \\ 3 & 50 & 75 \end{bmatrix}$. Now if the production in the factory is doubled in all categories then the revised $3 \begin{bmatrix} 50 & 75 \\ 50 & 75 \end{bmatrix}$. Now if the production in the factory is doubled in all categories then the revised quantities produced by the factory is given by the matrix (a) $\begin{bmatrix} 160 & 80 \\ 65 & 70 \\ 50 & 75 \end{bmatrix}$ (b) $\begin{bmatrix} 80 & 40 \\ 130 & 140 \\ 50 & 75 \end{bmatrix}$ (c) $\begin{bmatrix} 80 & 40 \\ 65 & 70 \end{bmatrix}$ (d) $\begin{bmatrix} 160 & 80 \\ 130 & 140 \end{bmatrix}$	1
77.	$\begin{bmatrix} 50 & 75 \end{bmatrix} = \begin{bmatrix} 100 & 150 \end{bmatrix}$ For a matrix A = $\begin{bmatrix} 2 & 5 \\ -11 & 7 \end{bmatrix}$, the value of AI is (a) $\begin{bmatrix} -2 & -5 \\ 11 & -7 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 5 \\ -11 & 7 \end{bmatrix}$ (c) $\begin{bmatrix} 7 & 11 \\ -5 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 7 & -5 \\ 11 & 2 \end{bmatrix}$	1
70	(-11 -7] $(-11 7]$ $(-11 7]$ $(-11 7]$ $(-11 2]$	1
78.	There are 3 families A, B and C. The number of men, women and children in these families are as under:MenWomenChildrenFamily A231Family B213Family C426When the above table is represented by a matrix , the order of the matrix is (a) $3 x 1$ (b) $1 x 3$ (c) $3 x 2$ (d) $3 x 3$	1
79.	If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$ then the value of k, a and b respectively are (a) -6, -12, -18 (b) -6, -4, -9 (c) -6, 4, 9 (d) -6, 12. 18	1
80.	The number of all possible matrices of order 3 x 2 with entry 0 or 1 is (a) 18 (b) 27 (c) 64 (d) 512	1

Q. NO	ANSWER	MARKS
1.	В	1
2.	С	1
3.	D	1
4.	D	1
5.	A	1
6.	В	1
7.	C	1
8.	C	1
9.	D	1
10.	B	1
10.	(iv)C(A+B')	1
11.	(10)C(A+B) Ans- O(B') =2X3	1
	O(A+B')=2X3	
	$C(A+B') = 2A^3$ C(A+B') is not defined as number of column of C \neq number of rows in	
	A+B'	
12.	(iii)144	1
	Ans- det(A)=12	
	$Det(adjA) = det(A)^{3-1} = 12^2 = 144$	
	properties:- det(adjA)=det(A) ⁿ⁻¹	
13.	iii)3,8	1
_	ans:- AB exist if x+5=y	
	BA exist if 11-y=x	
	Solving these two equation : x=3 and y=8	
14.	ii)4	1
	ans:-if the determinant of a matrix is zero then the matrix is called singular.	
	Thus, det(A)=0	
	i.e 2a-8=0	
	i.e a=4	
15.	ii)1	1
	ans:- determinant of a unit matrix of any order is 1.	
16.	iv)512	1
	ans:-in a 3x3 order matrix total number of entry is 9. Each entry is done by either 2 or	
	0 i.e by 2ways.so, by fundamental principle of counting the total number of ways in	
	which 9elements can be chosen to form matrices is 2^9 =512.	
17.	iii)-6, -4, -9	1
	ans:- $kA = k \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} k & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$	
	by equality of matrices	
	-4k=24 i.e k=-6	
	3a=2k i.e a=-4	
	2b=3k i.e b=-9	
18.	iv)5	1
	ans:- for a symmetric matrix $A=A^{T}$	
	x+2= 2x-3	
	x=5	
19.	iv)det(2A) = 16(detA)	1
	ans:- $ kA = k^n A $ where A is matrix of order n	

20.	$ii)\frac{1}{2}(I - A)$	1
_	ans:-A is non-singular matrix so A ⁻¹ exist	
	multiply A^{-1} in both side of matrix equation and use $A^{-1}A=I$ and $A^{-1}I=A^{-1}$	
21.	b	1
22.	b	1
23.	c	1
24.	d	1
25.	d	1
26. 27.	c b	1
27.	c	1
28.	a	1
30.	a	1
31.	С	1
32.	49	1
33.	5×1 or 1×5	1
34.	D	1
35.	K=3 and p=n	1
36.	A	1
37.	A	1
38.		1
	A= 7/2	-
39.	A	1
40.	В	1
41.	D	1
42.	с	1
43.	D	1
44.	Α	1
45.	В	1
46.	A	1
47.	A	1
48.	В	1
49.	В	1
50.	Α	1
50.	(a)	1
51.		1
53.	(a) (a)	1
53.	(a) (c)	1
55.	(c) (b)	
	(b)	1
56.	(a)	1
57.	(b)	1

58.	(d)	1
59.	(d)	1
60.	(c)	1
61.	d	1
62.	d	1
63.	c	1
64.	d	1
65.	b	1
66.	c	1
67.	c	1
68.	a	1
69.	a	1
70.	b	1
71.	b	1
72.	b	1
73.	a	1
74.	d	1
75.	c	1
76.	d	1
77.	b	1
78.	d	1
79.	b	1
80.	С	1

CHAPTER-3 MATRICES 02 MARK TYPE QUESTIONS

r	UZ WARK TIPE QUESTIONS	
Q. NO	QUESTION	MARK
1.	Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of Rs.160. From the shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of Rs.190. Also Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of Rs.250. Represent the above information in matrix equation.	2
2.	Consider two families A and B. Suppose there are 4 men, 4 women and 4 children in family A and 2 men, 2 women and 2 children in family B. The recommended daily amount of calories is 2400 for a man, 1900 for a woman 1800 for a children and 45 grams of proteins for a man, 55 grams for a woman and 33 grams for children. What are requirement of calories of family A is:	2
3.	If $A = (a_{ij})_{mxn}$ and $B = (b_{ij})_{mxn}$ are two matrices, then $A \pm B$ is of order mxn is defined as $(A \pm B)_{ij} = a_{ij} \pm b_{ij}$, where i=1,2,3m, j = 1,2,3n. $A = (a_{ij})_{mxn}$ and $b = (b_{jk})_{nxp}$ are two matrices, then AB is of order mxp and is defined as $(AB)_{ixk} = \sum_{r=1}^{n} a_{ir}b_{rk} = a_{i1}b_{1k} + a_{i2}b_{2k} + \cdots + a_{im}b_{mk}$ Consider $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$, $D = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ Find the matrix D such that AB-CD=0	2
4.	Two farmers Shyam and Balwan singh cultivated only three varieties of pulses namely Urad, Masoor and Mung. The sales of these varieties of pulses by both the farmers in the month of September and October are given by the following matrices A and B. September sales in Rupees: $A = \begin{bmatrix} 10000 & 20000 & 30000 \\ 50000 & 30000 & 10000 \end{bmatrix}$ October sales in rupees $B = \begin{bmatrix} 5000 & 10000 & 6000 \\ 20000 & 10000 & 10000 \end{bmatrix}$ 1 What is the combined sales of Masoor in September and October for Balwar Singh.	2
5.	A bolt manufacturing company produces three types of bolts x, y and z which he sell in two markets. Annual sales are indicated in the following table: Market Products (in numbers) X Y z I 5000 1000 9000 II 3000 10000 4000 If unit sales price x, y and z are Rs.2.50, Rs.1.50 and Rs.1 respectively, then answer the following. Total revenue collected from market I and II.	2
6.	If A = $\begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix}$ and A ⁿ = 0 then find minimum value of n?	2
7.	i)2ii) 3iii) 4iv)5If $A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$ and I is the identity matrix of order 2 then (A-2I) (A-3I) =i)1ii) zero matrixiii) Identity matrixiv) 0	2

8.	For what value of p, A ² =0, where A= $\begin{bmatrix} p & 1 \\ -1 & -p \end{bmatrix}$	2
	i)0 ii)∓1 iii)-1 iv)1	
9.	i)0 ii) ∓ 1 iii) -1 iv) 1 If A = $\begin{bmatrix} 1 & tan \frac{\theta}{2} \\ -tan \frac{\theta}{2} & 1 \end{bmatrix}$ and AB = I then B=	2
	i) $\cos^2 \frac{\theta}{2} A$ ii) $\cos^2 \frac{\theta}{2} I$ iii) $\cos^2 \frac{\theta}{2} A^T$ iv) none	
10.	If α and β are the roots of the equation 1+x+x ² =0, then $\begin{bmatrix} 1 & \beta \\ \alpha & \alpha \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ 1 & \beta \end{bmatrix} =$ $i) \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ $ii) \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}$ $iii) \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$	2
	$v_{l_{1}} = 2$ $v_{l_{-1}} = -1$ $v_{l_{-1}} = -2$	
11.	If A is a square matrix such that $A^2 = I$, then find the simplified value of $(A - I)^3 + (A + I)^3 - 7A$.	2
12.	Write the number of all possible matrices of order 2×2 with each entry 1, 2 or 3.	2
13.	$If 2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix} $ then, find the value if x + y.	2
14.	If $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$ then find value of $A^2 - 3A + 2I$.	2
15.	If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & x \\ -2 & 2 & -1 \end{bmatrix}$ is a matric satisfying $AA^{T} = 9I_{3}$, find x.	2
16.	Two schools A and B want to award their selected students on the values of Honesty, Hard work and Punctuality. The school A wants to award Rs. x each, Rs. y each and Rs. z each for the three respective values to its 3, 2 and 1 students respectively with a total award money of Rs.2200. School B wants to spend Rs.3100 to award its 4, 1 and 3 students on the respective values. The total amount of award for one prize on each value is Rs.1200. Convert this problem in matrix form.	2
17.	If A = $(a_{ij}) = \begin{bmatrix} 2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2 \end{bmatrix}$ and B = $(b_{ij}) = \begin{bmatrix} 2 & 1 & -1 \\ -3 & 4 & 4 \\ 1 & 5 & 2 \end{bmatrix}$, then (find co factor of a_{22}) + (co factor of b_{21})	2
18.	If A and B are symmetric matrices of the same order, prove that AB + BA is symmetric.	2
19.	If A is a square matrix such that $A^2 = A$, then write the value of $7A - (I + A)^3$, where I is the identity matrix	2

20.	If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$, Write A ⁻¹ in terms of A	2
21.	If A and B are symmetric matrices, show that AB is symmetric , if AB=BA.	2 MARKS
22.	If $A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$ write $a_{33} + a_{12} =$	2
23.	Show that A= $\begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}$ is a skew symmetric matrix.	2
24.	$\begin{bmatrix} -2 & -3 & 0 \end{bmatrix}$ If the matrix A= $\begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix}$ is skew symmetric matrix. Find the values of a and b.	2 MARKS
25.	If $\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} -4 & 6 \\ -9 & x \end{pmatrix}$, find the value of x.	2
26.	Let $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$. Find A', B' and verify that(2A)'=2A'	2
27.	Let $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 0 \\ 1 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 0 \\ 1 & -2 \end{bmatrix}$ Show that $A(BC) = (AB) C$	2
28.	For what values of x: $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ r \end{bmatrix} = 0.$	2
29.	Let $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 0 \\ 1 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 0 \\ 1 & -2 \end{bmatrix}$ Show that (AB) ' = B ' A '	2
30.	There are 3 families A, B and C. The number of men, women and children in these families are as Image: Men Women Children Family A 2 3 1 Family B 2 1 3 Family C 4 2 6 Under: Daily expenses of men, women and children are₹ 200, ₹ 150 and ₹ 200 respectively. Only men and women earn and children do not. Using matrix multiplication, calculate the daily expenses of each family. What impact does more children in the family create on the society ?	2
31.	Find k if A = $\begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$, and I = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ satisfy the relation A ² = k A – 2I.	2
32.	If $A = \begin{bmatrix} sin\alpha & cos\alpha \\ -cos\alpha & sin\alpha \end{bmatrix}$, then verify that $A'A = I$.	2
33.	If $A' = \begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$, then find $(A + 2B)'$.	2
34.	If $\begin{bmatrix} 3x - 2y & 5 \\ x & -2 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ -3 & -2 \end{bmatrix}$, find the value of y.	2

35.	[1 0 0]	[^x] [1]		2
	$If \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, find	x,y,z.	
36.	Consider the fol three factories I, Men wokers I 20 25 II 15 30	II and III	ation regarding the number of men and women worker in kers	2
	III 40 50 Represent the at second row and	ove information	on in the form of a 3 x 2 matrix. What does the entry in the represent?	
37.			of order 2 such that $a_{ij} = \begin{cases} 1, when i \neq j \\ 0, when i = j \end{cases}$ then find A ² .	2
38.	Explain why in (ii) $(A + B)^2 \neq$	general (i) (A $A^2 + 2AB + B$	$(-B)(A + B) \neq A^2 - B^2$, where A and B are matrices of same order.	2
39.	There are 3 fam are as under:	ilies A, B and G	C. The number of men, women and children in these families	2
		Men	Women Children	
	Family A	2	3 1	
	Family B	2		
	Family C Daily expenses	4 of men, womer	2 6 n and children are Rs. 200, Rs. 150 and Rs. 200 respectively.	
			ly expenses of each family.	
40.	its candidate in paise) is given in The number of B =	three ways: tele n matrix A as Cost per contended A = $\begin{bmatrix} 40\\100\\50 \end{bmatrix}$ H contacts of each Telephone = $\begin{bmatrix} 1000\\3000 \end{bmatrix}$		2
		5000	1000 10000J Y the group in two cities X and Y.	

Q. NO	ANSWER	MARKS
1.	Let $A = \begin{bmatrix} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 160 \\ 190 \\ 250 \end{bmatrix}$ and $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	2
	AX = B	2
2.	24,400 AB-CD=0	2
5.	$D = C^{-1}AB$ Here $C^{-1} = \frac{1}{9} \begin{bmatrix} 4 & -2 \\ -7 & 5 \end{bmatrix}$ and $A \cdot B = \begin{bmatrix} 3 & 0 \\ 43 & 22 \end{bmatrix}$	2
4.	$D = C^{-1}AB = \frac{1}{9} \begin{bmatrix} -74 & -44\\ 194 & 110 \end{bmatrix}$ $A = \begin{bmatrix} 10000 & 20000 & 30000\\ 50000 & 30000 & 10000 \end{bmatrix} \text{ and } B = \begin{bmatrix} 5000 & 10000 & 6000\\ 20000 & 10000 & 10000 \end{bmatrix}$ $A+B = \begin{bmatrix} 15000 & 30000 & 36000\\ 70000 & 40000 & 20000 \end{bmatrix}$	2
5.	Rs.23000 and Rs.26500	2
6.	i)2 ANS:- we can find that $A^2=0$ (0 here is zero matrix) $A^3=A^2A=0$ ·A =0 $A^n=0$ for all $n\ge 2$	2
7.	ii)zero matrix ans- (A-2I)(A-3I) = $\begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix} = 0$	2
8.	ii) ∓ 1 ANS:- A ² =0 P ² -1=0 P= ∓ 1	2
9.	iii) $\cos^2 \frac{\theta}{2} A^{T}$ ans:- $ A = 1 + \tan^2 \frac{\theta}{2}$ AB=I ie B=A ⁻¹ B= $(\operatorname{adj} A) \setminus A $ B= $\begin{bmatrix} 1 & -tan \frac{\theta}{2} \\ tan \frac{\theta}{2} & 1 \end{bmatrix} / \sec^2 \frac{\theta}{2}$ $=\cos^2 \frac{\theta}{2} \cdot A^{T}$	2
10.	ii) $\begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}$ as α and β are roots of 1+x+x ² =0 $\alpha + \beta = -1$ and $\alpha\beta = 1$ Also $1 + \alpha + \alpha^2 = 0$ and $1 + \beta + \beta^2 = 0$	2
11.	$\begin{aligned} A^{2} &= I \dots (i) \\ \text{Now, } (A - I)^{3} + (A + I)^{3} - 7A \\ &= (A^{3} - 3A^{2}I + 3AI^{2} - I) + (A^{3} + 3A^{2}I + 3AI^{2} + I^{3}) - 7A \\ &= A^{3} - 3A^{2} + 3AI - I + A^{3} + 3A^{2} + 3AI + I - 7A \\ &[\because A^{2}I = A^{2} \text{ and } I^{3} = I^{3} = I] \\ &= 2A^{3} + 6AI - 7A = 2A^{2} A + 6A - 7A [\because AI = A] \\ &= 2IA - A [\text{from Eq. (1)}] \end{aligned}$	2

	=2A-A=A [:: IA = A]	
12.	A matrix of order 2×2 has 4 entries. Since, each entry has 3 choices, 1, 2 or 3, therefore	2
12.	number of required matrices	2
13.	$3^4 = 3 \times 3 \times 3 \times 3 = 81.$ X=3, Y = 3 hence X+Y = 6	2
13.	$\begin{bmatrix} 1 & -1 & -1 \end{bmatrix}$	2
	$\begin{vmatrix} 1 & 1 & 1 \\ 3 & -3 & -4 \end{vmatrix}$	_
	$\begin{vmatrix} -3 & 2 & 0 \end{vmatrix}$	
15.	$AA^{T} = 9I,$	2
15.		2
	$\begin{vmatrix} y & y + 2x & 0 \\ 4 + 2x & 5 + x^2 & -2 - x \\ \end{vmatrix} = \begin{vmatrix} y & 0 & 0 \\ 0 & 0 \end{vmatrix}$	
	$\begin{bmatrix} 9 & 4+2x & 0\\ 4+2x & 5+x^2 & -2-x\\ 0 & -2-x & 9 \end{bmatrix} = \begin{bmatrix} 9 & 0 & 0\\ 0 & 9 & 0\\ 0 & 0 & 9 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & 2 & x & y \end{bmatrix} \begin{bmatrix} 0 & 0 & y \end{bmatrix}$ $X=-2$	
16.	Let,	2
	Award money for value 1 = Rs. X	_
	Award money for value 2 = Rs. Y	
	Award money for value 3 = Rs. Z	
	A/Q,	
	For school A: 3X + 2Y + Z = 2200	
	For school B: 4X + Y + 3Z = 3100	
	And X + Y + Z = 1200	
	In matrix form: $\begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} 2200 \\ 3100 \end{bmatrix}$	
	In matrix form: $\begin{vmatrix} 4 & 1 & 3 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 3100 \\ 1200 \end{vmatrix}$	
17.	Co factor of $a22+$ co factor of $b21$	2
	$\begin{bmatrix} 2 & -5 \end{bmatrix} + \begin{bmatrix} 1 & -1 \end{bmatrix}$	
	$\begin{bmatrix} -l_0 & -2 \end{bmatrix} + \begin{bmatrix} 5 & 2 \end{bmatrix}$	
	$ \begin{bmatrix} 3 & -6 \\ 5 & 0 \end{bmatrix} $	
18.	$A^T = A, B^T = B$	2
	$(AB + BA)^T = B^T A^T + A^T B^T.$	
	=BA+AB	
	=AB+BA (Commutativity)	
	Therefore AB+ BA is symmetric.	
19.	A ² =A	2
	7A-(I+A) ³	
	$= 7A - (I^3 + A^3 + 3I^2A + 3IA^2)$	
	=7A-I-7A (Using $I^3=I^2=I$, $A^2=A$)	
20		
20.	$A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$	2
	Det A= -19 (\neq 0)	

	-2 -31	
	$Adj A = \begin{bmatrix} -2 & -3 \\ -5 & 2 \end{bmatrix}$	
	A ⁻¹ =Adj A/Det A	
	$= \frac{1}{19} \begin{bmatrix} 2 & 3\\ 5 & -2 \end{bmatrix}$	
	$=\frac{1}{19}A$	
21.	Given A^T =A, B^T =B and if AB is symmetric then $(AB)^T$ =AB ALSO $(AB)^T = B^T A^T = BA$, therefore $AB = BA$	2
22.	Here a_{33} =9 and a_{12} =4 therefore $a_{33} + a_{12} = 13$	2
23.	Here $A^{t} = \begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & -3 \\ 2 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & 3 \\ -2 & -3 & 0 \end{pmatrix} = -A$ Therefore the matrix A is skew symmetric matrix.	2
24.	For skew symmetric matrix, $a_{ij} = -a_{ji}$ this gives	2
	$ \begin{pmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{pmatrix} = - \begin{pmatrix} 0 & 2 & b \\ a & 0 & 1 \\ -3 & -1 & 0 \end{pmatrix} \text{ or a=-2 and b=3.} $ $ \text{We have } \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} -4 & 6 \\ -9 & x \end{pmatrix} $	
25.	We have $\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} -4 & 6 \\ -9 & x \end{pmatrix}$	2
	This gives $\begin{pmatrix} -4 & 6 \\ -9 & 13 \end{pmatrix} = \begin{pmatrix} -4 & 6 \\ -9 & x \end{pmatrix}$ or x=13	
26.	This gives $\begin{pmatrix} -4 & 6 \\ -9 & 13 \end{pmatrix} = \begin{pmatrix} -4 & 6 \\ -9 & x \end{pmatrix}$ or x=13 2 A = 2 $\begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 0 \\ 4 & 2 & 6 \\ 2 & 4 & 2 \end{bmatrix}$	2
	$(2 A)' = \begin{bmatrix} 2 & 4 & 2 \\ -2 & 2 & 4 \\ 0 & 6 & 2 \end{bmatrix}$	
	$2 A' = 2 \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 2 \\ -2 & 2 & 4 \\ 0 & 6 & 2 \end{bmatrix}$	
	$2 A = 2 \begin{bmatrix} -1 & 1 & 2 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 2 & 4 \\ 0 & 6 & 2 \end{bmatrix}$	
	Hence verified	
27.	$BC = \begin{bmatrix} 8 & 0 \\ 7 & -10 \end{bmatrix}$	2
	r22 201	
	$A(BC) = \begin{bmatrix} 22 & -20 \\ 13 & -30 \end{bmatrix}$	
	$AB = \begin{bmatrix} 6 & 10 \\ -1 & 15 \end{bmatrix}$	
	$(AB)C = \begin{bmatrix} 22 & -20 \\ 13 & -30 \end{bmatrix}$	
	Hence verified	
28.	$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = 0.$	2
	Or, $[1+4+12+0+00+2+2]\begin{bmatrix} 0\\2\\x \end{bmatrix} = 0$	
L	LXJ	1

[0]	
Or, $[622] \begin{bmatrix} 0\\2\\x\\x \end{bmatrix} = 0$	
Or, $[4 + 4x] = 0$	
Or, 4 + 4x = 0	
Or, x = -1	
^{29.} AB = $\begin{bmatrix} 6 & 10 \\ -1 & 15 \end{bmatrix}$ (AB)' = $\begin{bmatrix} 6 & -1 \\ 10 & 15 \end{bmatrix}$	2
$B'A' = \begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 6 & -1 \\ 10 & 15 \end{bmatrix}$	
Hence verified	
^{30.} The members of three families can be represented by a 3x3 matrix F	2
given below	
$F = \begin{bmatrix} 2 & 3 & 1 \\ 2 & 1 & 3 \\ 4 & 2 & 6 \end{bmatrix}$	
$\begin{bmatrix} 1 & - & 2 & 1 & 3 \\ 4 & 2 & 6 \end{bmatrix}$	
And the daily expenses of men, women and children can be represented	
by 3x1 matrix R as given below	
$R = \begin{bmatrix} 150 \\ 222 \end{bmatrix}$	
L200J The total expense for each of the three families by matrix multiplication	
FR as given below	
$FR = \begin{bmatrix} 2 & 3 & 1 \\ 2 & 1 & 3 \\ 4 & 2 & 6 \end{bmatrix} \begin{bmatrix} 200 \\ 150 \\ 200 \end{bmatrix} = \begin{bmatrix} 1050 \\ 1150 \\ 2300 \end{bmatrix}$	
[4 2 6] [200] [2300]	_
Hence, families A, B and C have a daily expense of Rs. 1050, Rs. 1150 and	k
Rs. 2300.	
31. K = 1	2
32. Verification	2
33. $\begin{bmatrix} -4 & 5 \\ 1 & 6 \end{bmatrix}$	2
34. Since corresponding elements of equal matrices are equal.	2
\therefore x= -3 and 3x - 2 y = 3 \Rightarrow y = -6	
35. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x + 0 + 0 \\ 0 - y + 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1
$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z & 1 \\ z \end{bmatrix} \begin{bmatrix} 1 & 0 + 0 + z \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\Rightarrow x = 1, y = 0, z = 1.$	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
15 30	
The entry in the second row and second column represent the number of women	
The entry in the second row and second column represent the number of women worker in factory II.	2
The entry in the second row and second column represent the number of women worker in factory II. 37. $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	2
The entry in the second row and second column represent the number of women worker in factory II.37. $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	2

	$= A^2 + AB - BA - B^2$	
	In general $AB \neq BA$	
	So $(A - B)(A + B) \neq A^2 - B^2$	
	Similarly, $(A + B)^2 \neq A^2 + 2AB + B^2$	
39.	Let X = $\begin{bmatrix} 2 & 3 & 1 \\ 2 & 1 & 3 \\ 4 & 2 & 6 \end{bmatrix}$ and Y = $\begin{bmatrix} 200 \\ 150 \\ 200 \end{bmatrix}$ XY = $\begin{bmatrix} 400 + 450 + 200 \\ 400 + 150 + 600 \\ 800 + 300 + 1200 \end{bmatrix}$ = $\begin{bmatrix} 1050 \\ 1150 \\ 2300 \end{bmatrix}$	2
40.	Hence, families A, B and C expense Rs. 1050, Rs. 1150 and Rs. 2300 respectively Here BA = $\begin{bmatrix} 1000 & 500 & 5000 \\ 3000 & 1000 & 10000 \end{bmatrix} \begin{bmatrix} 40 \\ 100 \\ 50 \end{bmatrix}$ = $\begin{bmatrix} 40000 + 50000 + 250000 \\ 120000 + 100000 + 500000 \end{bmatrix}$ = $\begin{bmatrix} 340000 \\ 720000 \end{bmatrix}$ So the total amount spent by the group in cities X and Y are 340000 paise and 720000	2
	paise i.e Rs. 3400 and Rs. 7200 respectively.	

CHAPTER-3 MATRICES 03 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	A trust fund has Rs.35000 is to be invested in two different types of bonds. The first bond pays 8% interest per annum which will be given to orphanage and second bond pays 10% interest per annum which will be given to an NGO. Use matrix multiplication, determine how to divide Rs.35,000 among two types of bonds if the trust fund obtain an annual total interest of Rs.3200.	3
2.	In a city there are two factories A and B. Each factory produces sports clothes for boys and girls. There are three types of clothes produced in both the factories type I, type II and type III. For boys the number of units of types I, II and III respectively are 80, 70 and 65 in factory A and 85, 64 and 72 are in factory B. For girls the number of units of types I, II and II respectively are 80, 75, 90 in factory A and 50, 55, 80 are in factory B. 1. Write the matrix P, if P represents the matrix of number of units of each type produced by factory A for both boys and girls. 2. Write the matrix Q, if Q represents the matrix of number of units of each type produced by factory B for both boys and girls. 3. Find the total production of sports clothes of each type for boys.	3
3.	The sum of three number is 6. If we multiply third number by 3 and add second numberto it, we get 11. By adding first and third number we get double of the second number.The three numbers are respectively -i)2,3,1iii)2,1,3iv)1,2,3	3
4.	If $3x+2Y = I$ and $2X - Y = 0$ where I and 0 are the null matrices of order 3 respectively then :- i) $X=1/7$, $Y=2/7$ ii) $X=1/7$, $Y=2/7$ iii) $X=(1/7)I$, $Y=(2/7)I$ iv) $X=(2/7)I$, $Y=(1/7)I$	3
5.	To control a crop disease it is necessary to use 8 units of chemical A ,14 units of chemical B, and 13 units of chemical C. One barrel of spray P contains 1 unit of A, 2units of B and 3 units of C. One unit of spray Q contains 2 units of A, 3 units of B and 2 units of C. One barrel of spray R contains 1 unit of A, 2 units of B and 2 units of C. Based on the above information answer the following questions :- (a) if x barrels of spray P, y barrels of spray Q and z barrels of spray R are be used to just meet the requirement, then the above information can be represented in the form of :	3
	i)x+2y+z=8 $2x+3y+2z=14$ $3x+2y+2z=13$ ii) x+2y+3z=8 $x+3y+2z=14$ $x+2y+2z=13$ iii) x+2y+z=14 $2x+3y+2z=8$ $3x+2y+2z=13$ iv) x+2y+z=13 $2x+3y+2z=8$ $3x+2y+2z=14$	

	(b)if spray P, Q and R cost RS.500, RS.250 and RS.200 per barrel, the total cost incurred is i)1200 ii)1500 iii)950 iv)1600	
6.	If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ satisfies $A^3 - 6A^2 + 7A + kI_3 = 0$,	3
7.	find the value of k If $A = \begin{bmatrix} 3 & 9 \\ 5 & 7 \end{bmatrix}$ is written as $A = P + Q$, where P is a symmetric matrix and Q is skew-symmetric matrix, then write the matrix P	3
8.	For what value of x, is the matrix A = $\begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$ a skew-symmetric matrix?	3
9.	Find the values of x, y, z if the matrix $A=:\begin{bmatrix} 0 & 2y & z \\ x & y-z \\ x & -y & z \end{bmatrix}$ Satisfy the equation find $A^T A = 13$	3
10.	If $F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, Show that $F(x) \cdot F(y) = F(x + y)$.	3
11.	If A= $\begin{bmatrix} -2\\4\\5 \end{bmatrix}$ and B=[1 3 -6]Prove that $(AB)^T = B^T A^T$	3
12.	If $\begin{bmatrix} 2x-1\\5 \end{bmatrix} = \begin{bmatrix} 3\\x+y \end{bmatrix}$, find x and y.	3
13.	If $f(x)=x^2 - 4x + 1$, find $f(a)$, when $a = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$	3MARKS
14.	If A= $\begin{bmatrix} -2 & -1 & -4 \end{bmatrix}$ and B= $\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$, Show that $(BA)^T = A^T B^T$.	3
15.	If $\begin{bmatrix} xy & 4 \\ z+6 & x+y \end{bmatrix} = \begin{bmatrix} 8 & w \\ 0 & 6 \end{bmatrix}$, then find values of x, y, z and w.	3

16.	Three persons A, B and C were given the task of creating a square matrix of order 2. Below is the matrix created by them $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}, B = \begin{bmatrix} 4 & 0 \\ 1 & 5 \end{bmatrix} and C = \begin{bmatrix} 2 & 0 \\ 1 & -2 \end{bmatrix}$ (i) Find the sum of the matrices A, B and C (ii) Evaluate (A')' (iii) Find the matrix AC - BC	3
17.	If $A = \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix}$, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.	3
18.	Find $A^2 - 5A + 6I$, if $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$	3
19.	If $f(x) = \begin{bmatrix} cosx & -sinx & 0\\ sinx & cosx & 0\\ 0 & 0 & 1 \end{bmatrix}$, show that $f(x) f(y) = f(x + y)$.	3
20.	If $A^{T} = \begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$, find $(A + 2B)^{T}$.	3
21.	Mahesh created two matrices $A = \begin{bmatrix} -2 & x - y & 5 \\ 1 & 0 & 4 \\ x + y & z & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix}$. For what values of <i>x</i> , <i>y</i> and <i>z</i> the matrix A is symmetric and for what values of <i>a</i> , <i>b</i> and <i>c</i> the matrix B is skew-symmetric.	3
22.	A teacher gave a problem to his student to express the matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 3 \end{bmatrix}$ as the sum of a symmetric and a skew-symmetric matrices. The student gave the answer as $A = \frac{1}{2} \begin{bmatrix} 2 & -3 & 1 \\ -3 & 16 & 9 \\ 1 & 9 & 6 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & 9 & 9 \\ -9 & 0 & -3 \\ -9 & 3 & 0 \end{bmatrix}$ Examine whether the answer is correct or incorrect.	3
23.	Two matrices are A and B are given as $A = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$. Examine whether one is the inverse of the other or not.	3

Q. NO	ANSWER	MARKS
1.	Let investment in first type of bond be Rs.x	3
	The investment in second type of bond = Rs.35000-x	
	$[x, 35000 - x] \cdot \begin{bmatrix} \frac{8}{100} \\ \frac{10}{100} \end{bmatrix} = [3200]$	
	$\left[x, 35000 - x\right] \cdot \left[\frac{100}{10}\right] = [3200]$	
	After that will get investment in first bond = Rs.15000	
	And investment in second bond = Rs.20000	
2.	$\begin{bmatrix} 1 & B & - \begin{bmatrix} 80 & 80 \\ 70 & 75 \end{bmatrix}$	3
	1. $P = \begin{bmatrix} 70 & 75 \\ 65 & 00 \end{bmatrix}$	
	$\begin{bmatrix} 65 & 90 \\ 85 & 50 \\ 65 & 55 \end{bmatrix}$	
	$2. Q = \begin{bmatrix} 65 & 55 \end{bmatrix}$	
	L72 80J	
	3. X+Y=[165 135 137]	
3.	iv) 1,2,3	3
	Ans:-	
	The given problem can be represented as	
	a+b+c=6	
	b+3c =11 a-2b+c=0	
	corresponding matrix equation is	
	corresponding matrix equation is	
	$[1 \ 1 \ 1] [a_1] [6]$	
	$\begin{vmatrix} 0 & 1 & 3 \end{vmatrix} b = 11 $ (AX=B)	
	$\begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$	
	$\begin{bmatrix} a \\ b \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \end{bmatrix} \begin{bmatrix} 6 \\ 11 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad (X = A^{-1}B = \frac{AdjA}{ A }B)$	
	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix} $ (AX=B) $\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} $ (X=A ⁻¹ B= $\frac{Adj A}{ A }$ B)	
	So the three numbers are $a = 1$, $b = 2$, $c = 3$.	
4.	iii)X=(1/7)I ,Y=(2/7)I	3
	ans:- 3X+2Y=1(1)	
	2X-Y=0	
	4X-2Y=0(2)	
	Solving (1) and (2) 7X=I	
	i.e $X = \frac{1}{2}I$ and $Y = \frac{2}{2}I$	
5.	(a)(i) x+2y+z=8 2x+3y+2z=14 3x+2y+2z=13	3
	(b)(iv)1600	-
	Ans:- (a)as x,y,z be the number of barrel of spray P, Q, R respectively	
	spray P contains 1 unit of A, 2units of B and 3 units of C	
	spray Q contains 2units of A, 3 units of B and 2 units of C	
	spray R contains 1 unit of A, 2 units of B and 2 units of C.	
	thus option (i) is correct representation	
	(b)solving the liner equation by matrix method AX=B ie X=BA ⁻¹	

	$ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 14 \\ 13 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 \\ 2 & -1 & 0 \\ -5 & 4 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} $	
	Lz^{J} [13] L=5 4 -1J [3] Prices of spray P,Q,R are RS.500 ,RS.250, RS.200 respectively So, the total cost incurred is 1x500+2x250+3x200=1600	
6.	$ \begin{bmatrix} -2+k & 0 & 0 \\ 0 & -2+k & 0 \\ 0 & 0 & -2+k \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $	3
	$\begin{bmatrix} 0 & 0 & -2+k \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ K=2	
7.	$\begin{bmatrix} 3 & 6 \\ 6 & 9 \end{bmatrix}$	3
8.		3
9.	$A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix}$	3
	$A^{T} = \begin{bmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{bmatrix}$	
	$A^{T}A=13$ $\Rightarrow 2x^{2}=1$ $\Rightarrow x=\pm\frac{1}{\sqrt{2}}$ $\Rightarrow 4y^{2}=1$	
	\Rightarrow y= $\pm \frac{1}{2}$	
	$\Rightarrow 3z^2 = 1$ $\Rightarrow z = \pm \frac{1}{\sqrt{3}}$	
10.	$F(x) = \begin{bmatrix} \cos x & -\sin x & 0\\ \sin x & \cos x & 0\\ 0 & 0 & 1 \end{bmatrix}.$ $F(y) = \begin{bmatrix} \cos y & -\sin y & 0\\ \sin y & \cos y & 0\\ 0 & 0 & 1 \end{bmatrix}.$	3
	$F(x) \times F(y) = \begin{bmatrix} \cos x & -\sin x & 0\\ \sin x & \cos x & 0\\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} \cos y & -\sin y & 0\\ \sin y & \cos y & 0\\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} \cos(x+y) & -\sin(x+y) & 0\\ \sin(x+y) & \cos(x+y) & 0\\ 0 & 0 & 1 \end{bmatrix}$	

	=F(x+y)	
11.	$A = \begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix} \implies A^{T} = \begin{bmatrix} -2 & 4 & 5 \end{bmatrix}$	3
	$B=[1 \ 3 \ -6] \Rightarrow B^{T}=\begin{bmatrix} 1\\ 3\\ -6 \end{bmatrix}$	
	$(AB)^{T} = \begin{bmatrix} -2 & 4 & 5\\ -6 & 12 & 15\\ 12 & -24 & -30 \end{bmatrix}$	
	=B ^T A ^T	
12.	Here $\begin{bmatrix} 2x-1\\5 \end{bmatrix} = \begin{bmatrix} 3\\x+y \end{bmatrix}$ this gives 2x-1=3 or 2x=3+1 or 2x =4 or x=2 and x+y=5 or 2+y=5 or y=5-2 or y=3	3
13.	$f(x)=x^{2}-4x+1 \text{ therefore } f(a)=a^{2}-4a+1=\begin{pmatrix} 7 & 12\\ 4 & 7 \end{pmatrix}-4\begin{pmatrix} 2 & 3\\ 1 & 2 \end{pmatrix}+\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}=\begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}=0$	3
14.	$A = \begin{bmatrix} -2 & -1 & -4 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix} \text{ this gives } (BA)^T = \begin{bmatrix} 2 & 1 & 4 \\ -4 & -2 & -8 \\ -6 & -3 & -12 \end{bmatrix}^T = \begin{bmatrix} 2 & -4 & -6 \\ -4 & -2 & -8 \\ -6 & -3 & -12 \end{bmatrix}^T = \begin{bmatrix} 2 & -4 & -6 \\ 1 & -2 & -3 \\ 4 & -8 & -12 \end{bmatrix}$	3
15.	Since, it is given that $\begin{bmatrix} xy & 4 \\ z+6 & x+y \end{bmatrix} = \begin{bmatrix} 8 & w \\ 0 & 6 \end{bmatrix}$ So. xy = 8, w = 4, x + y =6 and z+ 6 = 0 Solving we get x = 2, y = 4, z = -6, w = 4 Or, x = 4, y = 2, z = -6, w = 4	3
16.	$(i) A+B+C = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 1 & 5 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 7 & 2 \\ 1 & 6 \end{bmatrix}$ $(ii) A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ $A' = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$ $(A')' = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ $(iii) AC - BC = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & -2 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & -2 \end{bmatrix}$ $= \begin{bmatrix} 4 & -4 \\ 1 & -6 \end{bmatrix} - \begin{bmatrix} 8 & 0 \\ 7 & -10 \end{bmatrix} = \begin{bmatrix} -4 & -4 \\ -6 & 4 \end{bmatrix}$	3

r		1
17.	$\begin{bmatrix} 8 & 0 \\ \text{Since } A - \begin{bmatrix} 4 & -2 \\ -2 \end{bmatrix} \text{ and } B - \begin{bmatrix} 4 & -2 \\ -2 \end{bmatrix} \text{ and } 2A + 2Y - 5B$	3
	Since, $A = \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix}$ and $2A + 3X = 5B$	
	$S_{\rm D}$ we have $2N = 5D = 2A$	
	So, we have $3x = 5B - 2A$ $= 5\begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix} - 2\begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} -6 & -10 \\ 12 & 14 \\ -31 & -7 \end{bmatrix}$ So, $X = \begin{bmatrix} -2 & -10/3 \\ 4 & 14/3 \\ -31/3 & -7/3 \end{bmatrix}$	
	=5 4 2 -2 4 -2 $=$ 12 $14=$ 1 2 6 $=$ 21 7	
	$\begin{bmatrix} -2 & -10/3 \end{bmatrix}$	
	So, X = 4 14/3	
	$\lfloor -31/3 - 7/3 \rfloor$	
18.	$\begin{bmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \end{bmatrix}$	3
19.	L-5 4 Verification	3
20.		1.5
20.	$A + 2B = \begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix} + 2\begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} -4 & 1 \\ 5 & 6 \end{bmatrix}$	1.5
	$\therefore (\mathbf{A} + 2\mathbf{B})^{\mathrm{T}} = \begin{bmatrix} -4 & 5\\ 1 & 6 \end{bmatrix}.$	1.5
		2
21.	A is symmetric if $A = A'$ $\begin{bmatrix} -2 & x = y \\ 5 \end{bmatrix} \begin{bmatrix} -2 & 1 & x + y \end{bmatrix}$	3
	So $\begin{bmatrix} -2 & x - y & 5 \\ 1 & 0 & 4 \\ x + y & z & 7 \end{bmatrix} = \begin{bmatrix} -2 & 1 & x + y \\ x - y & 0 & z \\ 5 & 4 & 7 \end{bmatrix}$	
	$\begin{vmatrix} 50 & 1 & 0 & 4 \end{vmatrix} = \begin{vmatrix} x - y & 0 & 2 \\ x + y & z & 7 \end{vmatrix} = \begin{vmatrix} 5 & 4 & 7 \end{vmatrix}$	
	x - y = 1, x + y = 5, z = 4	
	So $x = 3$, $y = 4$, $z = 4$	
	B is skew symmetric if $\mathbf{B} = -\mathbf{B}^{\prime}$	
	$\begin{bmatrix} 0 & a & 3 \\ 2 & i & i \end{bmatrix} \begin{bmatrix} 0 & -2 & -c \\ -i & -i & -c \end{bmatrix}$	
	So $\begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -2 & -c \\ -a & -b & -1 \\ -3 & 1 & 0 \end{bmatrix}$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
22.	Hence, $a = -2, b = 0, c = -3$ Let $P = \frac{1}{2} \begin{bmatrix} 2 & -3 & 1 \\ -3 & 16 & 9 \\ 1 & 9 & 6 \end{bmatrix}$ $(a = 1 \begin{bmatrix} 2 & -3 & 1 \\ -3 & 16 & 9 \\ 1 & 9 & 6 \end{bmatrix}$	3
	Let $P = \frac{1}{2} - 3 = 16 - 9$	
	$P' = \frac{1}{2} \begin{vmatrix} 2 & -3 & 1 \\ -3 & 16 & 9 \end{vmatrix}$	
	$1 = \frac{1}{2} \begin{bmatrix} -3 & 10 & 9 \\ 1 & 9 & 6 \end{bmatrix}$	
	$\Lambda = \mathbf{D} - \mathbf{D}'$ D is symmetric	
	Let $Q = \frac{1}{2} \begin{bmatrix} -9 & 0 & -3 \end{bmatrix}$	
	As $r = r$, r is symmetric Let $Q = \frac{1}{2} \begin{bmatrix} 0 & 9 & 9 \\ -9 & 0 & -3 \\ -9 & 3 & 0 \end{bmatrix}$ $Q' = \frac{1}{2} \begin{bmatrix} 0 & -9 & -9 \\ 9 & 0 & 3 \\ 9 & -3 & 0 \end{bmatrix}$ $= -\frac{1}{2} \begin{bmatrix} 0 & 9 & 9 \\ -9 & 0 & -3 \\ -9 & 3 & 0 \end{bmatrix}$	
	$O' = \frac{1}{9} \left[\begin{array}{c} 0 \\ 0 \end{array} \right] $	
	$\begin{bmatrix} 2 \\ 9 \\ -3 \\ 0 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 9 & 9 \end{bmatrix}$	
	$=-\frac{1}{2} \begin{bmatrix} -9 & 0 & -3 \\ -2 & 2 & -3 \end{bmatrix}$	
	$[-9 \ 3 \ 0]$	
	So Ω is skew-symmetric	
	$P + Q = \begin{bmatrix} 1 & 3 & 5 \\ -6 & 8 & 6 \\ -4 & 6 & 3 \end{bmatrix}$	
	$P + Q = \begin{bmatrix} -6 & 8 & 6 \end{bmatrix}$	
	$\begin{bmatrix} 1 & -4 & 6 & 3 \end{bmatrix}$	
	= A	
23.	So the answer is correct. Since $AB = BA = I$	3
23.	Since $AB = BA = 1$ So, one is the inverse of the other	3
L		

CHAPTER-3 MATRICES 04 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	On her birthday, Seema decided to donate some money to children of an orphanage	4
	home. If there were 8 children less, everyone would have ot Rs.10 more. However, if there	
	were 16 children more, everyone would got Rs.10 less. Let the number of children be x	
	and the amount distributed by Seema for one child be y.	
	1. Find the equation related to the given problem in terms x and y.	
	2. find the number of children. How much amount is given to each child by seema?	
2.	Two farmers Ramakishan and Gurucharan singh cultivate only three varieties of rice	4
	namely Basmati, Permal and Naura. The sale of these varieties of rice by both the farmers	
	in the month of September and October are given by the following matrices A and B.	
	September sales in Rupees:	
	$A = \begin{bmatrix} 10000 & 20000 & 30000 \\ 50000 & 20000 & 10000 \end{bmatrix}$	
	October sales in rupees	
	$B = \begin{bmatrix} 5000 & 10000 & 6000\\ 20000 & 10000 & 10000 \end{bmatrix}$	
	1.The total sales in September and October for each farmer in each variety can be	
	represented as	
	A) A+B B) A-B C) A>B D) A <b< td=""><td></td></b<>	
	2. What is the value of A_{23} ?	
	A) 10,000 B) 20,000 C) 30,000 D) 40,000	
	3. The decrease in sales from September to October is given by	
	A) A+B B) A-B C) A>B D) A <b< td=""><td></td></b<>	
	4. If Ramakishan receives 2% profit on gross sales, compute his profit for each variety sold	
	in October.	
	A) Rs.100, Rs.200, Rs.120 B) Rs.100, Rs.200, Rs.130	
	C) Rs.100, Rs.220, Rs.120 D) Rs.110, Rs.200, Rs.120	
3.	DIET PROBLEMS :-	4
	There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2	
	men, 2 women 4 children in family B. The recommend daily amount of calories is 2200 for	
	men, 2500 for women, 2000 for children and 75 grams of proteins for men, 70 grams for	
	women and 35 grams for children. Represent the above information using matrix.	
	Using matrix multiplication, calculate the total requirement of calories and proteins for	
	each of the two families. What awareness can you create among people about the	
	planned diet from this question?	

4.	HELPING THE DISABLED :- A trust caring for handicapped children gets Rs.30000 every month from its donors. The trust spends half of the funds received for medical & educational care of the children & for that it charges 2% of the spent amount from them, & deposited the balance amount in a private bank to get the money multiplied so that the trust goes on functioning regularly. What percent of interest should the trust get from the bank so as to get a total of Rs. 1800 every month? Use the matrix method to find the rate of interest.	4
	Building disability Inclusive Education through Data Image: Ima	
5.	Express the matrix $A = \begin{bmatrix} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4 \end{bmatrix}$ as the sum of a symmetric and skew-symmetric matrix.	4
6.	The sum of three numbers is 2. If we subtract the second number from twice the first number, we get 3. By adding double the second number and the third number we get 0. Represent it algebraically and find the numbers using matrix method.	4
7.	Express the following matrix as the sum of symmetric and a skew-symmetric matrix:	4

	$\begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix}$	
8.	If, A= $\begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$ find $A^2 - 5A + 16I$.	4
9.	Amit, Biju, Chirag are classmates. Each of them was asked to write a square matrix of order 2. They wrote the following matrices. $A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} B = \begin{pmatrix} 4 & 0 \\ 1 & 5 \end{pmatrix} and c = \begin{pmatrix} 2 & 0 \\ 1 & -2 \end{pmatrix} . If a=4 and b=-2, based on the above information answer the following question: I) Find the sum of matrices A, B and C II) Find the value of A^TFind AC-BC.$	4
10.	Define Lower triangular matrix and upper triangular matrix? give example.	4
11.	If $A = \begin{bmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{bmatrix}$ and I is the identity matrix of order 2, show that $I + A = (I - A) \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$.	4
12.	Find the value of x, if $\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$	4
13.	Ram purchases 3 pens, 2 bags, and 1 instrument box and pays ₹ 41. From the same shop, Dheeraj purchases 2 pens, 1 bag, and 2 instrument boxes and pays ₹ 29, while Ankur purchases 2 pens, 2 bags, and 2 instrument boxes and pays ₹ 44. Image: The same shop of the same same shop of the same same same same same same same sam	
14.	Three friends Ravi, Raju and Rohit were buying and selling stationery items in a market. The price of per dozen of Pen, notebooks and toys are Rupees x, y and z respectively. Ravi purchases 4 dozen of notebooks and sells 2 dozen pens and 5 dozen toys. Raju purchases 2 dozen toys and sells 3 dozen pens and 1 dozen of notebooks. Rohit purchases one dozen of pens and sells 3 dozen notebooks and one dozen toys. In the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively.	

	(i) What is the price of one dozen pens? (1 mark)					
	(ii) What is the total price of one dozen pens and one dozen of notebooks? (1 mark)					
	(iii) What is the sale amount of Ravi?					
	(11) (2 marks)					
15.	Three schools DPS, CVC and KVS decided to organize a fair for collecting money for	4				
	helping the flood victims. They sold handmade fans, mats and plates from recycled material					
	at a cost of Rs. 25, Rs.100 and Rs. 50 each respectively. The numbers of articles sold are					
	given as					
	School /Article DPS CVC KVS					
	Handmade fans 40 25 35					
	Mats 50 40 50					
	Plates 20 30 40					
	Based on the information given above, answer the following questions:					
	(i). What is the total money (in Rupees) collected by the school DPS?					
	(ii). If the number of handmade fans and plates are interchanged for all the schools, then					
	what is the total money collected by all schools?					
	(iii). How many articles (in total) are sold by three schools?					
16.	There are two families A and B. There are 4 men, 6 women and 2 children in family A and	4				
	2 men, 2 women and 4 children in family B. The recommended daily amount of calories is					
	2400 for men, 1900 for women and 1800 for children 45 grams of protein for men, 55					
	grams for women and 33 grams for children.					
	(i) Represent the above information using matrices					
	(ii) Calculate the total requirement of calories and proteins for each of the two families.					

Q. NO			ANS	SWER			MARKS
1.	1. 5x-4y=40 and 5x-8y=-80						2
	2. x=32 and y =3	0					2
2.	1-A 2-A 3-B 4-A						
3.	Ans:- The given data c Family member:		sented as-				
		Men		women		Children	
	А	4		6		2	
	В	2		2		4	
	Diet to in-take:-						
			Calories		protie	en	
	Men		2200		75		
	Women		2500		70		
	children		2000		35		
	This can be solve	d in matrix	multiplication	as]
		$\begin{bmatrix} 4 & 6 \\ 2 & 2 \end{bmatrix}$	2^{2}	$\begin{bmatrix} 75\\70\\35 \end{bmatrix} = \begin{bmatrix} 2780\\1740 \end{bmatrix}$	0 790 0 430		
	Thus family A real 17400calories ar			790gms of pr	otein ; fa	mily B required	
4.	Ans:-						4
	from the interes Total fund receiv X= 2% of RS.150 As matrix it can Let R be the rate As y=1500 = $\frac{R}{100}$ So, the rate of in	ved is RS.300 00 = 300 be represent 00 = 0 00 = 10 00 = 100 00 = 1000 00 = 100 00 = 100 00 = 1000 00 = 100	boo ted as $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \end{bmatrix} =$ by the bank .50 <i>i. e.</i> R	$] = \begin{bmatrix} 1800 \\ 300 \end{bmatrix} \\ \begin{bmatrix} 300 \\ 1500 \end{bmatrix} \\ = 10\%$			
5.	$\frac{1}{2}(A+A') + \frac{1}{2}(A)$ $\begin{bmatrix} 2 & \frac{11}{2} & -\frac{5}{2} \\ \frac{11}{2} & 3 & \frac{3}{2} \\ \frac{-5}{2} & \frac{3}{2} & 4 \end{bmatrix}$	$ \begin{array}{c} -A' \\ -A' \\ + \left[\begin{array}{c} 0 & -\frac{3}{2} \\ \frac{3}{2} & 0 \\ \frac{7}{2} & -\frac{7}{2} \end{array} \right] \end{array} $	$\begin{bmatrix} -\frac{7}{2} \\ \frac{7}{2} \\ 0 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 7 & 3 \\ 1 & -2 \end{bmatrix}$	$\begin{bmatrix} -6\\5\\2&4 \end{bmatrix}$			4
6.	X+Y+Z=2 2X-Y=3 2Y+2=0						4

	x = 1, y = -2, z = 2	
7.	$ \begin{array}{l} x = 1, y = -2, z = 2 \\ A = \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix} \\ = P + Q \end{array} $	4
	$P = \frac{1}{2} \begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{bmatrix}$	
	$Q = -\frac{1}{2} \begin{bmatrix} 0 & 5 & 4 \\ -5 & 0 & 6 \\ 3 & 6 & 0 \end{bmatrix}$	
	Here P is a symmetric matrix and Q is skew symmetric matrix	
8.	$A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix}.$	4
	$A^{2} = \begin{pmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{pmatrix}.$	
	$A^{2} - 5A + 16I = \begin{pmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{pmatrix} - 5\begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} + 16\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
	$ = \begin{pmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{pmatrix}. $	
9.	$A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} B = \begin{pmatrix} 4 & 0 \\ 1 & 5 \end{pmatrix} \text{ and } c = \begin{pmatrix} 2 & 0 \\ 1 & -2 \end{pmatrix}$ $A + B + C = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} + \begin{pmatrix} 4 & 0 \\ 1 & 5 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ 1 & 6 \end{pmatrix}$ $A^{T} = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$ $A C - B C = \begin{pmatrix} 4 & -4 \\ 1 & -6 \end{pmatrix} - \begin{pmatrix} 8 & 0 \\ 7 & -10 \end{pmatrix} = \begin{pmatrix} -4 & -4 \\ -6 & 4 \end{pmatrix}$	4
10.	A square matrix in which all the elements above the diagonal elements are zero is a lower triangular matrix. Ex: A= $\begin{bmatrix} 5 & 0 & 0 \\ 1 & -3 & 0 \\ 2 & 4 & 2 \end{bmatrix}$ A square matrix in which all the elements below the diagonal elements are zero is a upper triangular matrix. Ex: $\begin{bmatrix} 5 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{bmatrix}$	4

11.	L.H.S. = I + A = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ + $\begin{bmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{bmatrix}$ = $\begin{bmatrix} 1 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 1 \end{bmatrix}$ I - A = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ - $\begin{bmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{bmatrix}$ = $\begin{bmatrix} 1 & \tan\frac{\alpha}{2} \\ -\tan\frac{\alpha}{2} & 1 \end{bmatrix}$ R.H.S. = $(I - A)\begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$ = $\begin{bmatrix} 1 & \tan\frac{\alpha}{2} \\ -\tan\frac{\alpha}{2} & 1 \end{bmatrix}\begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$ = $\begin{bmatrix} 1 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 1 \end{bmatrix}$ Hence, L.H.S. = R.H.S. Verified	4
12.	$\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$ Or, $\begin{bmatrix} 1+2x+15 & 3+5x+3 & 2+x+2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$ Or, $\begin{bmatrix} x^2 + 16x+28 \end{bmatrix} = 0$ Or, $\begin{bmatrix} x^2 + 16x+28 \end{bmatrix} = 0$ Or, $(x + 2)(x + 14) = 0$ Or, $x = -2, -14$	4
13.	(i) ₹ 2 (ii) ₹17 (iii) ₹7	1+1+2
14.	(i) ₹ 100 (ii) ₹ 300 (iii) ₹ 1200	1+1+2
15.	(i) Total money collected by the school DPS is Rs. 7000(ii) Total money collected by all the schools is Rs. 18500(iii) The total articles sold by the schools is 330	4
16.	(i) The matrices are $P = \begin{bmatrix} 4 & 6 & 2 \\ 2 & 2 & 4 \end{bmatrix} Q = \begin{bmatrix} 2400 \\ 1900 \\ 1800 \end{bmatrix}$ and $R = \begin{bmatrix} 45 \\ 55 \\ 33 \end{bmatrix}$ (ii) Here $PQ = \begin{bmatrix} 4 & 6 & 2 \\ 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} 2400 \\ 1900 \\ 1800 \end{bmatrix}$ $= \begin{bmatrix} 24600 \\ 15800 \end{bmatrix}$ And $PR = \begin{bmatrix} 4 & 6 & 2 \\ 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} 45 \\ 55 \\ 33 \end{bmatrix}$ $= \begin{bmatrix} 576 \\ 332 \end{bmatrix}$ Hence total requirement of calories and protein for family A are 24600 and 576 grams respectively and total requirement of calories and protein for family B are 15800 and 332 grams respectively.	4

CHAPTER-3 MATRICES 05 MARK TYPE QUESTIONS

Q. NO						MARK
1.	A manufacture produc	ces three statio		Pencil Fraser and	Sharnener which he	5
1.	sells in two markets. A					5
		cts (in numbers		· · · ·		
	Pencil Eraser	•	>)			
	A 10,000 2,000	•				
	B 6,000 20,000					
	0,000 20,000	0,000				
	If the unit sale price of respectively, and unit respectively, then				.50and Rs.1.00 00, Rs.1.00 and Rs.0.50	
	1) Total revenue of ma	arket A				
	•	s.60,400 C) R	Rs 46 000 D) F	Rs.40,600		
	2) Total revenue of ma		(3.40,000 D) 1	13.40,000		
	•	s.53,000 C) R	Rs.50.300 D) F	Rs.30,500		
	3) Cost incurred in ma					
	•		Rs.10,300 D) R	s.31,000		
	4) Cost incurred in ma		. ,			
	A) Rs.13,000 B) Rs.	s.30,100 C) R	Rs.10,300 D) Rs	5.31,000		
	5) Profits in market A	and B respectiv	vely are			
	A) (Rs,15,000, Rs.17,00	000) B) ((Rs.17,000, Rs.1	.5,000)		
	C) (Rs.51,000, Rs.71,00	00) C) ((Rs.10,000, Rs.2	0,000)		
2.	Three school DPS, CVC	C and KVS decid	ded to organize	a fair for collecti	ng money for helping	5
	the flood victims. They	y sold handmad	de fans, mats ar	nd plates from re	cycled material at a	
	cost of Rs.25, Rs.100 a	and Rs.50 each	respectively. Th	ne number of arti	cles sold are given as	
	School/Article DI	PS C	CVC	KVS		
	Handmade fans 40	0 2	25	35		
	Mats 50	0 4	40	50		
	Plates 20	0 3	30	40		
	1. What is the total mo		-			
	A) Rs.700 B) Rs.700					
	2. What is the total an		• •		(VS?	
	A) Rs.14000 B) Rs.15,					
	3. What is the total amount of money collected by all three school DPS, CVC and KVS?					
	A) Rs.15775 B) Rs.14,		· ·	25		
	4. How many articles a	-				
	A) 230 B) 130	C) 430	D) 330			
	5. What is the total an				PS, CVC?	
	A) Rs.14875 B) Rs.130			5		
3.	PROMOTING AWAREN					5
	To promote the makin	ng of toilet for w	women, an orga	inization tried to	generate awareness	
	through					
	House call					
	Letters					

	Announcement				
	The cost for each attempt is	given bellow			
	"We are a group and we can all go out together. That is the biggest change in our lives." -Parsina Khatoop		PINK LADIES T ितिक महिला शौ	OILET	
	• Rs.50				
	• Rs.20				
	• Rs.40				
		-	ree villages X, Y a	and Z are given bellow	
			Letters	Announcements	
	X 40		300	100	
	Y 30 Z 50		250	75	
	Z 50 Find the total cost in		400	150	
	matrices`	curred by the of		liee villages using	
	induces				
4.	GEOMETRICAL TRANSFORMATION: Matrices allow arbitrary linear trans suitable for computation. This also a multiplying their matrices). Linear transformations like stretchin projection are not the only ones that	formations to b allows transform ng, squeezing, ro	nations to be con otation, shearing	mposed easily (by g, reflection, orthogonal	5
	Reflect about origin Reflect about	x-axis Reflec	tabouty-axis		
	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$		$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$		
	$(-1,0) \qquad F \qquad \downarrow \qquad \downarrow$	(1,0) X (-1,0) 0			
	REFLECTION IN X-AXIS If P(X,Y) is a point then its re Which can also be given by $\binom{X'}{Y'}$ REFLECTION IN Y-AXIS			re X'=X and Y'=-Y	
	If P(X,Y) is a point then its re	flection in Y-axi	s is P'(X',Y') whe	re X'=-X and Y'=Y	

	Which can also be given by $\binom{X'}{Y'} = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} \binom{X}{Y}$	
	REFLECTION IN ORIGIN If P(X,Y) is a point then its reflection in origin is P'(X',Y') where X'=-X and Y'=-Y Which can also be given by $\binom{X'}{Y'} = \binom{-1 & 0}{0 & -1} \binom{X}{Y}$	
	Using this concept of transformation find the reflection of the following points (a) (2,-3) in X-axis (b) (-5,7) in Y-axis (c) (11,23) in origin	
5.	 On her birthday, Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got Rs. 10 more. However, if there were 16 Children more, everyone would have got Rs. 10 less. Let the no. Of children be x and the amount of money distributed be y (in Rs.) II. Find the number of children who were given some money by seema. III. How much money is given to each child by Seema. OR How much money Seema spends in distributing the money to all the students of orphanage? 	5
6.	The monthly incomes of two brother Rakesh and Rajesh are in the ratio 3:4 and the monthly expenditures are in the ratio 5:7.Each brother save ₹15000 per month. Read the above instruction and answer the following questions. (i) If monthly income of Rakesh and Rajesh are ₹3x and ₹4x and their problem. (ii) write the matrix equation for question (i). (iii) If AX = B, where A, B, X are matrices then, X is (a) AB (b) AB ⁻¹ (c) A ⁻¹ B (d) BA ⁻¹ (iv) If A= $\begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}$ then, find A ⁻¹ .	5
7.	 (v) Find the monthly income of Rakesh & Rajesh respectively? The monthly incomes of two brothers Rakesh and Rajesh are in the ratio 3:4 and the monthly expenditures are in the ratio 5:7. Each brother saves Rs. 15000 per month. For the above data, answer the following questions: 	5

(i) If monthly income of Rakesh and Rajesh are 3x and 4x and their expenditure are 5y and 7y respectively, then identify the system of linear equations for the above problem. (a) $x - y = 15000, x + y = 15000$ (b) $3x + 5y = 15000, 4x + 7y = 15000$ (c) $3x - 5y = 15000, 4x - 7y = 15000$ (ii) Identify the matrix equation for the above situation. (a) AX=B, where $A = \begin{bmatrix} 1 & -1 \\ 1 & 5 \\ 7 \end{bmatrix}, X = (x y)^T, B = (15000 15000)^T$ (b) AX=B, where $A = \begin{bmatrix} 1 & -2 \\ 1 & -7 \\ 1 & -4 \end{bmatrix}, X = (x y)^T, B = (15000 15000)^T$ (c) AX=B, where $A = \begin{bmatrix} 3 & -7 \\ 1 & -4 \end{bmatrix}, X = (x y)^T, B = (15000 15000)^T$ (d) AX=B, where $A = \begin{bmatrix} 3 & -7 \\ 4 & -7 \end{bmatrix}, X = (x y)^T, B = (15000 15000)^T$ (d) AX=B, where $A = \begin{bmatrix} 3 & -7 \\ 4 & -7 \end{bmatrix}, X = (x y)^T, B = (15000 15000)^T$ (iii) Monthly incomes of Rakesh and Rajesh respectively are (a) 90,000 each (b) 90,000 and 1,20,000 (c) 1,20,000 and 90,000 (d) 30000 and 150000 8. Three friends Ravi, Raju and Rohit were buying and selling stationery items in a market. The price of per dozens of Pen, notebooks and toys are Rupees x, y and z respectively. Ravi purchases 4 dozen of notebooks and sells 2 dozen pens and 5 dozen toys. Raju purchases 4 dozen of notebooks and sells 3 dozen notebooks and one dozen toys. In the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Answer the following questions using the matrix method: 1. What is the price of one dozen of pens? 2. What is the total price of one dozen of pens? 3. What is the total price of one dozen of pens and one dozen of notebooks?			
(b) $3x + 5y = 15000$, $4x + 7y = 15000$ (c) $3x - 5y = 15000$, $4x - 7y = 15000$ (d) $5x - 3y = 15000$, $x - 4y = 15000$ (ii) Identify the matrix equation for the above situation. (a) $AX=B$, where $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (b) $AX=B$, where $A = \begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (c) $AX=B$, where $A = \begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (d) $AX=B$, where $A = \begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (iii) Monthly incomes of Rakesh and Rajesh respectively are (a) 90,000 each (b) 90,000 and 1,20,000 (c) 1,20,000 and 90,000 (d) 30000 and 15000 8. Three friends Ravi, Raju and Rohit were buying and selling stationery items in a market. The price of per dozens of Pen, notebooks and toys are Rupees x, y and z respectively. Ravi purchases 2 dozen toys and sells 3 dozen pens and 5 dozen toys. Raju purchases 2 dozen toys and sells 3 dozen notebooks and one dozen toys. In the process, Ravi, Raju and Rohit earn \mathbf{E} 1500, \mathbf{E} 100 and \mathbf{E} 400 respectively. Answer the following questions using the matrix method: 1. What is the price of one dozen of pens? 2. What is the total price of one dozen of pens and one dozen of		are 5y and 7y respectively, then identify the system of linear equations for the	
(d) $5x - 3y = 15000$, $x - 4y = 15000$ (ii) Identify the matrix equation for the above situation. (a) $Ax=B$, where $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (b) $AX=B$, where $A = \begin{bmatrix} 3 & 5 \\ -3 \\ 4 & -7 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (c) $AX=B$, where $A = \begin{bmatrix} 5 & -3 \\ 4 & -7 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (d) $AX=B$, where $A = \begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (iii) Monthly incomes of Rakesh and Rajesh respectively are (a) 90,000 each (b) 90,000 and 1,20,000 (c) 1,20,000 and 90,000 (d) 30000 and 15000 8. Three friends Ravi, Raju and Rohit were buying and selling stationery items in a market. The price of per dozens of Pen, notebooks and toys are Rupees x, y and z respectively. Ravi purchases 4 dozen of notebooks and sells 2 dozen pens and 5 dozen toys. Raju purchases 2 dozen toys and sells 3 dozen notebooks and one dozen toys. Rohit purchases 2 dozen of pens and sells 3 dozen notebooks and one dozen toys. In the process, Ravi, Raju and Rohit earn \mathbb{R} 1500, \mathbb{R} 100 and \mathbb{R} 400 respectively. Answer the following questions using the matrix method: 1. What is the price of one dozen of pens? 2. What is the total price of one dozen of pens and one dozen of			
(ii) Identify the matrix equation for the above situation. (a) AX=B, where $A = \begin{bmatrix} 1 & -1 \\ 3 & 5 \\ 7 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (b) AX=B, where $A = \begin{bmatrix} 5 & -3 \\ 1 & -4 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (c) AX=B, where $A = \begin{bmatrix} 5 & -3 \\ 1 & -4 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (d) AX=B, where $A = \begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (iii) Monthly incomes of Rakesh and Rajesh respectively are (a) 90,000 each (b) 90,000 and 1,20,000 (c) 1,20,000 and 90,000 (d) 30000 and 15000 Three friends Ravi, Raju and Rohit were buying and selling stationery items in a market. The price of per dozens of Pen, notebooks and toys are Rupees x, y and z respectively. Ravi purchases 4 dozen of notebooks and sells 2 dozen pens and 5 dozen toys. Raju purchases 2 dozen tops and sells 3 dozen notebooks and one dozen toys. Roht purchases 0 not of pens and sells 3 dozen notebooks and one dozen toys. In the process, Ravi, Raju and Rohit earn $1500, 100$ and 1400 respectively. Answer the following questions using the matrix method: . What is the price of one dozen of pens? 2. What is the total price of one dozen of pens and one dozen of		(c) 3x - 5y = 15000, 4x - 7y = 15000	
(a) AX=B, where A = $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (b) AX=B, where A = $\begin{bmatrix} 3 & 5 \\ -3 \\ 4 & -7 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (c) AX=B, where A = $\begin{bmatrix} 1 & -2 \\ -4 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (d) AX=B, where A = $\begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (iii) Monthly incomes of Rakesh and Rajesh respectively are (a) 90,000 each (b) 90,000 and 1,20,000 (c) 1,20,000 and 90,000 (d) 30000 and 15000 Three friends Ravi, Raju and Rohit were buying and selling stationery items in a market. The price of per dozens of Pen, notebooks and toys are Rupees x, y and z respectively. Ravi purchases 4 dozen of notebooks and sells 2 dozen pens and 5 dozen toys. Raju purchases 2 dozen toys and sells 3 dozen pens and 1 dozen of notebooks. Rohit purchases one dozen of pens and sells 3 dozen notebooks and one dozen toys. In the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Answer the following questions using the matrix method: 1. What is the price of one dozen of pens? 2. What is the total price of one dozen of pens and one dozen of		(d) 5x - 3y = 15000, x - 4y = 15000	
(b) AX=B, where $A = \begin{bmatrix} 3 & 5 \\ 4 & 7 \\ 1 & -4 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (c) AX=B, where $A = \begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (d) AX=B, where $A = \begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}$, $X = (x y)^T$, $B = (15000 15000)^T$ (iii) Monthly incomes of Rakesh and Rajesh respectively are (a) 90,000 each (b) 90,000 and 1,20,000 (c) 1,20,000 and 90,000 (d) 30000 and 15000 8. Three friends Ravi, Raju and Rohit were buying and selling stationery items in a market. The price of per dozens of Pen, notebooks and toys are Rupees x, y and z respectively. Ravi purchases 4 dozen of notebooks and sells 2 dozen pens and 5 dozen toys. Raju purchases 2 dozen toys and sells 3 dozen pens and 1 dozen of notebooks. Rohit purchases one dozen of pens and sells 3 dozen notebooks and one dozen toys. In the process, Ravi, Raju and Rohit earn \mathbf{E} 1500, \mathbf{E} 100 and \mathbf{E} 400 respectively. Answer the following questions using the matrix method: 1. What is the price of one dozen of pens? 2. What is the total price of one dozen of pens and one dozen of		(ii) Identify the matrix equation for the above situation.	
 (c) AX=B, where A = [53], X = (x y)^T, B = (15000 15000)^T (d) AX=B, where A = [3 - 5], X = (x y) T, B = (15000 15000)^T (iii) Monthly incomes of Rakesh and Rajesh respectively are (a) 90,000 each (b) 90,000 and 1,20,000 (c) 1,20,000 and 90,000 (d) 30000 and 15000 [3000 8. Three friends Ravi, Raju and Rohit were buying and selling stationery items in a market. The price of per dozens of Pen, notebooks and toys are Rupees x, y and z respectively. Ravi purchases 4 dozen of notebooks and sells 2 dozen pens and 5 dozen toys. Raju purchases 2 dozen toys and sells 3 dozen pens and 1 dozen of notebooks. Rohit purchases one dozen of pens and sells 3 dozen notebooks and one dozen toys. In the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively.		(a) AX=B, where A = $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, X = (x y) ^T , B = (15000 15000) ^T	
 (d) AX=B, where A = [3 -5], X = (xy)T, B = (15000 15000)^T [iii) Monthly incomes of Rakesh and Rajesh respectively are [a) 90,000 each (b) 90,000 and 1,20,000 (c) 1,20,000 and 90,000 (d) 30000 and 15000 [a] Three friends Ravi, Raju and Rohit were buying and selling stationery items in a market. The price of per dozens of Pen, notebooks and toys are Rupees x, y and z respectively. Ravi purchases 4 dozen of notebooks and sells 2 dozen pens and 5 dozen toys. Raju purchases 2 dozen toys and sells 3 dozen pens and 1 dozen of notebooks. Rohit purchases one dozen of pens and sells 3 dozen notebooks and one dozen toys. In the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Answer the following questions using the matrix method: 1. What is the price of one dozen of pens? 2. What is the total price of one dozen of pens and one dozen of 		(b) AX=B, where A = $\begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix}$, X = $(x y)^{T}$, B = $(15000 \ 15000)^{T}$	
 (iii) Monthly incomes of Rakesh and Rajesh respectively are (a) 90,000 each (b) 90,000 and 1,20,000 (c) 1,20,000 and 90,000 (d) 30000 and 15000 8. Three friends Ravi, Raju and Rohit were buying and selling stationery items in a market. The price of per dozens of Pen, notebooks and toys are Rupees x, y and z respectively. Ravi purchases 4 dozen of notebooks and sells 2 dozen pens and 5 dozen toys. Raju purchases 2 dozen toys and sells 3 dozen pens and 1 dozen of notebooks. Rohit purchases one dozen of pens and sells 3 dozen notebooks and one dozen toys. In the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Answer the following questions using the matrix method: What is the price of one dozen of pens? What is the total price of one dozen of pens and one dozen of 		(c) AX=B, where A = $\begin{bmatrix} 5 & -3 \\ 1 & -4 \end{bmatrix}$, X = $(x y)^{T}$, B = $(15000 \ 15000)^{T}$	
 (a) 90,000 each (b) 90,000 and 1,20,000 (c) 1,20,000 and 90,000 (d) 30000 and 15000 8. Three friends Ravi, Raju and Rohit were buying and selling stationery items in a market. The price of per dozens of Pen, notebooks and toys are Rupees x, y and z respectively. Ravi purchases 4 dozen of notebooks and sells 2 dozen pens and 5 dozen toys. Raju purchases 2 dozen toys and sells 3 dozen pens and 1 dozen of notebooks. Rohit purchases one dozen of pens and sells 3 dozen notebooks and one dozen toys. In the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Answer the following questions using the matrix method: What is the price of one dozen of pens? What is the total price of one dozen of pens and one dozen of 		(d) AX=B, where A = $\begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}$, X = (xy)T, B = (15000 15000) ^T	
15000 5 8. Three friends Ravi, Raju and Rohit were buying and selling stationery items in a market. The price of per dozens of Pen, notebooks and toys are Rupees x, y and z respectively. 5 Ravi purchases 4 dozen of notebooks and sells 2 dozen pens and 5 dozen toys. 6 Raju purchases 2 dozen toys and sells 3 dozen pens and 1 dozen of notebooks. 6 Rohit purchases one dozen of pens and sells 3 dozen notebooks and one dozen toys. 7 In the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. 7 In the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. 7 Answer the following questions using the matrix method: 1. What is the price of one dozen of pens? 2. What is the total price of one dozen of pens and one dozen of 7		(iii) Monthly incomes of Rakesh and Rajesh respectively are	
 market. The price of per dozens of Pen, notebooks and toys are Rupees x, y and z respectively. Ravi purchases 4 dozen of notebooks and sells 2 dozen pens and 5 dozen toys. Raju purchases 2 dozen toys and sells 3 dozen pens and 1 dozen of notebooks. Rohit purchases one dozen of pens and sells 3 dozen notebooks and one dozen toys. In the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Answer the following questions using the matrix method: What is the price of one dozen of pens? What is the total price of one dozen of pens and one dozen of 			
 Raju purchases 2 dozen toys and sells 3 dozen pens and 1 dozen of notebooks. Rohit purchases one dozen of pens and sells 3 dozen notebooks and one dozen toys. In the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. In the process process of the process of	8.	market. The price of per dozens of Pen, notebooks and toys are Rupees x, y and z respectively.	5
In the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Image: State of the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Image: State of the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Image: State of the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Image: State of the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Image: State of the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Image: State of the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Image: State of the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Image: State of the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Image: State of the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Image: State of the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Image: State of the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Image: State of the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹400 respectively. Image: State of the process, Ravi, Raju and Rohit earn ₹ 1500, ₹ 100 and ₹ 100		Raju purchases 2 dozen toys and sells 3 dozen pens and 1 dozen of notebooks. Rohit purchases one dozen of pens and sells 3 dozen notebooks and one dozen	
 What is the price of one dozen of pens? What is the total price of one dozen of pens and one dozen of 			
 What is the price of one dozen of pens? What is the total price of one dozen of pens and one dozen of 			
2. What is the total price of one dozen of pens and one dozen of		Answer the following questions using the matrix method:	
		 What is the price of one dozen of pens? 	
notebooks?		2. What is the total price of one dozen of pens and one dozen of	
		notebooks?	

	3. What is the sale amount of Ravi?					
	4. What	is the amo	ount of pur	chases ma	de by all three friends?	
			-		three friends?	
	St What			naac oy an		
9.		Г 2	_1 1	1		
9.	Ear the mat	$riv \Lambda = \begin{bmatrix} L \\ 1 \end{bmatrix}$	-1 1 2 1	chow th	at $A^2 - 5A + 4I = 0$. Hence find	5
	FOI the mati		2 -1	, show th	3IA = 5A + 4I = 0. Hence find	
	a — 1	L 1	-1 2	1		
	A^{-1} .			0 07 507		
10.	For what val	с Г а		2 0 0		5
	For what val	lue of x ,[1	2 1] 2	0 1 2	= 0.	
	Des Internet		<u>l1</u>	0 2 [x]		_
11.		•	•		ee schools A, B and C organized a mela for ictims. They sold handmade fans, mats, and	5
	-				d \gtrless 50 each. The number of articles sold by	
	plates nonifice	yelea materia		125, 1100 di	a too cach. The hamber of articles sold by	
				2		
	school A, B, C a	re given helov		· · ·		
		chool A				
	Fans So	40	B 25	C 35		
	Mats	50	40	50		
	Plates	20	30	40		
12.	Read the text c gained populari Techniques in t and structures.	arefully and a ity due to the he Industries Mr. Suresh is	answer the quarter of the second seco	uestions: The ialization and as the Indust uring busines	rpose after 20% hike in price. nut and bolt manufacturing business has introduction of the Capital - Intensive crial fasteners to connect various machines of Nuts and bolts. He produces three types al sales (in₹) indicated below:	5
	Markets	x	Products	Z		
	I	10000	y 2000	18000		
	II	6000	2000	8000		
			-	₹ 2.50, ₹ 1.50) and \gtrless 1.00 respectively, then find the total	
		nit costs of th nd the cost pri			s are₹ 2.00, ₹ 1.00 and 50 paise respectively, II.	
	3. If the u	nit costs of th				1

	then find gross profit from both the markets.	
	4. If matrix $A = [a_{ij}]_{2 \times 2}$ where $a_{ij} = 1$, if $i \neq j$ and $a_{ij} = 0$, if $i = j$ then find A^2 .	
13.	If A = $\begin{bmatrix} 0 & -tan\alpha/2 \\ tan\alpha/2 & 0 \end{bmatrix}$ and I is the identity matrix of order 2, show that	5
	$I + A = (I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$	
14.	Express the following matrix A as the sum of a symmetric and a skew symmetric matrix $A = \begin{bmatrix} 3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7 \end{bmatrix}.$	5
15.	A manufacturer produces three products x, y, z which he sells in two markets. Annual sales are indicated below: Market Products	5
	I 10000 2000 18000 II 6000 2000 8000	
	(a) If unit sales prices o x, y and z are Rs. 2.50, Rs. 1.50 and Rs. 1.00 respectively, find the total revenue in each market with the help of matrix algebra.	
	(b) If the unit costs of the above three commodities are Rs. 2.00, Rs. 1.00 and 50 paise respectively. Find the gross profit.	
16.	Two farmers Ram and Shyam cultivates only three varieties of rice namely Basmati, Permal and Naura. The sale (in rupees) of these varieties of rice by both the farmers in the month of October and November are given by the following matrices A and B October sales (in rupees) Basmati Permal Naura $A = \begin{bmatrix} 10000 & 20000 & 30000 \\ 50000 & 30000 & 10000 \end{bmatrix} Ram Shyam$	5
	November sales (in rupees) Basmati Permal Naura $B = \begin{bmatrix} 5000 & 10000 & 6000 \\ 20000 & 10000 & 10000 \end{bmatrix} \begin{bmatrix} Ram \\ Shyam \end{bmatrix}$	
	 (i) Find the combined sales in October and November for each farmer in each variety. (ii) Find the decrease in sales October to November. (iii) If both farmers receive2 % profit on gross sales, compute the profit for each farmer and for each variety sold in November. 	

ANSWERS:

Q. NO	ANS	SWER	MARKS
1.	1-C, 2-B 3-D 4-C 5-A		5
2.	1-B 2-A 3-C 4-D 5-A		5
3.	Ans:- The above problem can be represented by Cost matrix A =[house call letters and = [50 No. of attempts in villages B = $\begin{bmatrix} 400 & 300 \\ 300 & 250 \\ 100 & 75 \end{bmatrix}$ The total cost in making the awareness is i.e AB=[50 20 40] $\begin{bmatrix} 400 & 300 & 500 \\ 300 & 250 & 400 \\ 100 & 75 & 150 \end{bmatrix}$ = $\begin{bmatrix} 30000 \\ 23000 \\ 39000 \end{bmatrix}$ Thus the cost incurred to the promote mag are RS.30000 ,RS.23000 and RS.39000 responses	<pre>inouncement] 20 40] Z 500 400 150 given by AB king toilets for women in villages X, Y and Z</pre>	5
4.	Ans:- (a) The reflection of P(2,-3) is $\binom{x}{y} = \binom{1 \ 0}{0 \ -1} \binom{2}{-3} = \binom{2}{3}$; P'(2,3) (b) the reflection of Q(-5,7) is $\binom{x}{y} = \binom{-1 \ 0}{0 \ 1} \binom{-5}{7} = \binom{5}{7}$; Q'(5,7) (c) the reflection of R(11,23) is $\binom{x}{y} = \binom{-1 \ 0}{0 \ -1} \binom{11}{23} = \binom{-11}{-23}$; R'(-11,-23)	5
5.	5x - 4y = 40 (i) $5x - 8y = -80$ $A = \begin{bmatrix} 5 & -4 \\ 5 & -8 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix}, B = \begin{bmatrix} 40 \\ -80 \end{bmatrix}$ (ii) 33 (iii) 30 or 960		5
6.	(ii) $3x - 5y = 15000; 4x - 7y = 15000$ (ii) $AX=B$ Where $A = A = \begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix}$ (iii) (c) (iv) $\begin{bmatrix} 7 & -5 \\ 4 & -3 \end{bmatrix}$	$\end{bmatrix}, \mathbf{B} = \begin{bmatrix} 15000\\15000 \end{bmatrix}$	5

	$X = A^{-1}B$	
	Monthly income of Rajesh= 120000	
	Monthly income of Rakesh= 90000	
7.	The equations are, $3x - 5y = 15000$, $4x - 7y = 15000$	5
	In matrix form AX=B,	
	where A = $\begin{pmatrix} 3 & -5 \\ 4 & -7 \end{pmatrix}$, X = $\begin{pmatrix} x \\ y \end{pmatrix}$, B = $\begin{pmatrix} 15000 \\ 15000 \end{pmatrix}$	
	$A^{-1} = \begin{pmatrix} 7 & -5 \\ 4 & -3 \end{pmatrix}$	
	$X = A^{-1}B = \begin{pmatrix} 7 & -5 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} 15000 \\ 15000 \end{pmatrix} = \begin{pmatrix} 30000 \\ 15000 \end{pmatrix}$	
	4^{-3} 15000^{-1} 15000^{-1}	
	Answers: (i) c (ii) d (iii) b	
8.	Given,	5
	The price of per dozen of Pen, Notebook and toys are Rupees x. y and z	
	respectively	
	A/Q,	
	2x - 4y + 5z = 1500	
	3x + y - 2z = 100Type equation here.	
	-x + 3y + z = 400	
	In matrix form, AX=B , i.e	
	$\begin{bmatrix} 2 & -4 & 5 \\ 3 & 1 & -2 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 1500 \\ 100 \\ 400 \end{bmatrix}$	
	Implies $\begin{bmatrix} X \\ Y \end{bmatrix} = A^{-1}B$	
	$\lfloor Z \rfloor$	
	Implies X=200 Y=100	
	Z=300	
	(1) Rupees 100	
	(2) rupees 300(100+200)	
	(3) Sell amount of Ravi= Rupees 1900	
	(4) Total amount of purchases= rupees 1100	
	(5) Total price of sells= rupees 3200	
9.	Here $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \end{bmatrix}$ now	5
	$\begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$ $\begin{bmatrix} 6 & -5 & 5 \end{bmatrix}$ $\begin{bmatrix} 2 & -1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	
	Here A = $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ now LHS A^2 -5A +4I= $\begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix}$ - 5 $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ + 4 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ = $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ =	
	0 PROVED	

10.	Here $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{bmatrix} 0 \\ 2 \\ r \end{bmatrix} = 0 \text{ or } \begin{bmatrix} 6 & 2 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ r \end{bmatrix} = 0 \text{ or } 4 + 4x = 0 \text{ or } 4x = -4 \text{ or } x = -1$	5
11.	(i) Let P = $\begin{bmatrix} 40 & 50 & 20 \\ 25 & 40 & 30 \\ 35 & 50 & 40 \end{bmatrix}$ and Q = $\begin{bmatrix} 25 \\ 100 \\ 50 \end{bmatrix}$ (ii) Clearly, total funds collected by each school is given by the matrix PQ = = $\begin{bmatrix} 40 & 50 & 20 \\ 25 & 40 & 30 \\ 35 & 50 & 40 \end{bmatrix} \begin{bmatrix} 25 \\ 100 \\ 50 \end{bmatrix} = = \begin{bmatrix} 7000 \\ 6125 \\ 7875 \end{bmatrix}$ So, funds collected by school A is Rs. 7000 funds collected by school B is Rs. 6125 funds collected by school C is Rs. 7875 (iii) New price matrix Q = 120% of $\begin{bmatrix} 25 \\ 100 \\ 50 \end{bmatrix} = \begin{bmatrix} 25x1.2 \\ 100x1.2 \\ 50x1.2 \end{bmatrix} = \begin{bmatrix} 30 \\ 120 \\ 60 \end{bmatrix}$ (iv) Now, PQ = $\begin{bmatrix} 40 & 50 & 20 \\ 25 & 40 & 30 \\ 35 & 50 & 40 \end{bmatrix} \begin{bmatrix} 30 \\ 120 \\ 60 \end{bmatrix} = \begin{bmatrix} 8400 \\ 7350 \\ 9450 \end{bmatrix}$ Total fund collected = 8400+7350+9450 = Rs. 25200	5
12.	(i) Let $A = \begin{bmatrix} 10000 & 2000 & 18000 \\ 6000 & 20000 & 8000 \end{bmatrix}$ and $B = \begin{bmatrix} 2.5 \\ 1.5 \\ 1.5 \\ 1 \end{bmatrix}$ Now, Revenue = Sale price x Number of items sold $= \begin{bmatrix} 10000 & 2000 & 18000 \\ 6000 & 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.5 \\ 1.5 \\ 1 \end{bmatrix} = \begin{bmatrix} 46000 \\ 53000 \end{bmatrix}$ So, revenue from Market I = Rs. 46,000 and revenue from Market II = Rs. 53000 (ii) Now, let $C = \begin{bmatrix} 2 \\ 1 \\ 0.5 \end{bmatrix}$ Then total Cost = AC = $\begin{bmatrix} 10000 & 2000 & 18000 \\ 6000 & 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 31000 \\ 36000 \end{bmatrix}$ Cost price in market I = Rs. 31000 and cost price in market II = Rs. 36000 (iii) So, Profit matrix = Revenue matrix - Cost matrix $= \begin{bmatrix} 46000 \\ 53000 \end{bmatrix} = \begin{bmatrix} 15000 \\ 17000 \end{bmatrix}$ Therefore, gross profit = Rs. 15000 + Rs. 17000 = Rs. 32000 (iv) $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $A^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1$	5
13.	Verification.	5
14.	1. Now, A can be written as $A = \frac{1}{2}(A+A') + \frac{1}{2}(A-A')$	5

	$\frac{1}{2}(A+A') = \begin{bmatrix} 3 & 3 & 5/2 \\ 3 & 1 & 9/2 \\ 5/2 & 9/2 & 7 \end{bmatrix} = P, \text{ say}$	
	P'=P, So P is symmetric	
	${}^{1/2}(A-A') = \begin{bmatrix} 0 & -1 & 5/2 \\ 1 & 0 & -3/2 \\ -5/2 & 3/2 & 0 \end{bmatrix} = Q \text{ say,}$	
	Q'=-Q, So Q is skew symmetric	
	Now , we can check $P + Q = A$	
15.	(a) Let A = $\begin{bmatrix} 10000 & 2000 & 18000 \\ 6000 & 20000 & 8000 \end{bmatrix}$ and B = $\begin{bmatrix} 2.50 \\ 1.50 \\ 1.00 \end{bmatrix}$	5
	Now Revenue, AB = $\begin{bmatrix} 10000 & 2000 & 18000 \\ 6000 & 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.50 \\ 1.50 \\ 1.00 \end{bmatrix}$ = $\begin{bmatrix} 46000 \\ 53000 \end{bmatrix}$	
	Hence, revenue for market I is Rs. 46000 and revenue for market II is Rs. 53000 (b) Let $P = \begin{bmatrix} 10000 & 2000 & 18000 \\ 6000 & 20000 & 8000 \end{bmatrix}$ and $Q = \begin{bmatrix} 2.00 \\ 1.00 \\ 0.50 \end{bmatrix}$	
	Then total cost, $PQ = \begin{bmatrix} 10000 & 2000 & 18000 \\ 6000 & 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.00 \\ 1.00 \\ 0.50 \end{bmatrix}$ - [31000]	
	$= \begin{bmatrix} 31000\\ 36000 \end{bmatrix}$ Gross profit for market I = Revenue – total cost = Rs. 46000 – Rs. 31000	
	= Rs, 15000 Gross profit for market II = Revenue – total cost = Rs. 53000 – Rs. 36000	
16.	$= \text{Rs}, 17000$ (i) Combined sales in October and November for each farmer is given by $A + B = \begin{bmatrix} 15000 & 30000 & 36000 \\ 70000 & 40000 & 20000 \end{bmatrix}$	5
	(ii) Change in sale from October to November is given by $A - B = \begin{bmatrix} 5000 & 10000 & 24000 \\ 30000 & 20000 & 0 \end{bmatrix}$	
	$\begin{bmatrix} (11) & 2\% & \text{of } B = \frac{100}{100} \begin{bmatrix} 20000 & 10000 & 10000 \end{bmatrix} \\ = \begin{bmatrix} 100 & 200 & 120 \\ 400 & 200 & 200 \end{bmatrix}$	
	Hence, in November Ram receives Rs. 100, Rs. 200 and Rs. 120 as profit in the sale of each variety of rice, respectively, and Shyam receives profit of Rs. 400, Rs. 200 and Rs. 200 in the sale of each variety of rice, respectively.	

As Per Revised CBSE Curriculum 2023-24

Classroom Teaching & Animated Videos Playlists

We take immense pleasure in serving you. Now, revel in our seamless online services completely free of charge. view our animated and classroom teaching Playlists customized for students from grade 1 to 12,Covering a wide range of subjects to enhance your comprehension and knowledge. Simply click on the provided playlist links to access **Playlists based on the latest NCERT Syllabus for 2023-24.**

content includes **Competency-Based** Our Questions, Assertion-Reason Questions, Previous Year Questions (PYQ), and Study-Based Questions to enhance your Case learning experience. For the most up-to-date videos, consider subscribing to our YouTube channel at https://www.youtube.com/@PrincipalsHandbookandDiaryadditionall y, you're encouraged to join our expanding WhatsApp community group to stay updated with the latest curriculum-related content and updates.

Nageen Group of Schools

We are committed to enriching your educational journey!!!

ANIMATED & CLASSROM TEACHING VIDEOS PLAYLISTS

(As per revised CBSE Curriculum- 2023-24)

ANIMATED VIDEOSPLAYLIS	TS (CLASS 1)
Class 1 EVS(EnglishLanguage)(CBSE)	Click here for playlist
Class 1 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 1 EVS (HindiLanguage)(CBSE)	Click here for Playlist
Class 1 Mathematics(Hindi Language)(CBSE)	Click here for Playlist
ANIMATED VIDEOS PLAYLIS	
Class 2 EVS (EnglishLanguage)(CBSE)	Click here for Playlist
Class 2 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 2 EVS(HindiLanguage)(CBSE)	Click here for Playlist
Class 2 Mathematics (Hindi Language)(CBSE)	Click here for Playlist
ANIMATED VIDEOS PLAYLIS	STS (CLASS 3)
Class 3 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 3 EVS (EnglishLanguage)(CBSE)	Click here for Playlist
Class 3 EVS (HindiLanguage)(CBSE)	Click here for Playlist
Class 3 Mathematics (HindiLanguage)(CBSE)	Click here for Playlist
ANIMATED VIDEOS PLAYLIS	STS (CLASS 4)
Class 4 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 4 EVS(EnglishLanguage)(CBSE)	Click here for Playlist
Class 4 Mathematics (HindiLanguage)(CBSE)	Click here for Playlist
Class 4 EVS (HindiLanguage)(CBSE)	Click here for Playlist
CLASSROOM TEACHING VIDEOS P	LAYLISTS (CLASS 4)
Class 4 General Science (CBSE)	Click here for Playlist
ANIMATED VIDEOS PLAYLIS	
Class 5 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 5 Science (EnglishLanguage)(CBSE)	Click here for Playlist
Class 5 Mathematics(HindiLanguage)(CBSE)	Click here for Playlist
Class 5 Science (HindiLanguage)(CBSE)	Click here for Playlist
CLASSROOM TFACHING VIDEOS P	
CLASSROOM TEACHING VIDEOS P Class 5 General Science (CBSE)	Click here for Playlist

ANIMATED VIDEOS PLAYLISTS(CLASS 6)
Class 6 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 6 Social Science (EnglishLanguage)(CBSE)	Click here for Playlist
Class 6 Science (EnglishLanguage) (CBSE)	Click here for Playlist
Class 6 Mathematics (Hindi Language)(CBSE)	Click here for Playlist
Class 6 Science All Chapters (CBSE)	Click here for Playlist
CLASSROOM TEACHING VIDEOS PLAY	
Class 6 Mathematics (CBSE)	Click here for Playlist
Class 6 Social Science (CBSE)	Click here for Playlist
Class 6 Sanskrit (CBSE)	Click here for Playlist
Class 6 Hindi (CBSE)	Click here for Playlist
Class 6 Science (CBSE)	Click here for Playlist
ANIMATED VIDEOS PLAYLISTS (
Class 7 Science(CBSE)	Click here for Playlist
Class 7 Mathematics(CBSE)	Click here for Playlist
Class 7 Social Science(CBSE)	Click here for Playlist
Class 7 Mathematics(CBSE)	Click here for Playlist
Class 7 Science (CBSE)	Click here for Playlist
CLASSROOM TEACHING VIDEOS PLAY	
Class 7 Science (CBSE)	Click here for Playlist
Class 7 Hindi (CBSE)	Click here for Playlist
Class 7 Sanskrit (CBSE)	Click here for Playlist
Class 7 Social Science (CBSE)	Click here for Playlist
Class 7 Mathematics (CBSE)	<u>Click here for Playlist</u>
ANIMATED VIDEOS PLAYLISTS (CLASS 8)
Class 8 Science(CBSE)	Click here for Playlist
Class 8 Mathematics(CBSE)	Click here for Playlist
Class 8 Social Science(CBSE)	Click here for Playlist
Class 8 Mathematics(CBSE)	Click here for Playlist
Class 8 Science(CBSE)	Click here for Playlist
CLASSROOM TEACHING VIDEOS PLAY	LISTS (CLASS 8)
Class 8 Hindi (CBSE)	Click here for Playlist
Class 8 Sanskrit (CBSE)	Click here for Playlist
ANIMATED VIDEOS PLAYLISTS (CLASS 9)
Class 9 Biology(CBSE)	Click here for Playlist
Class 9 Physics(CBSE)	Click here for Playlist
Class 9 Chemistry(CBSE)	Click here for Playlist
Class 9 Social Science (CBSE)	Click here for Playlist

Class 9 Mathematics (CBSE)	Click here for Playlist
Class 9 Science (CBSE)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 9)	
Class 9 Social Science (CBSE)	Click here for Playlist
Class 9 Mathematics(CBSE)	Click here for Playlist
Class 9 English (CBSE)	<u>Click here for Playlist</u>
Class 9 Hindi (CBSE)	<u>Click here for Playlist</u>

ANIMATED VIDEOS PLAYLISTS (CLASS 10)		
Class 10 Biology (CBSE)	Click here for Playlist	
Class 10 Physics (CBSE)	Click here for Playlist	
Class 10 Chemistry (CBSE)	Click here for Playlist	
Class 10 Social Science (CBSE)	Click here for Playlist	
Class 10 Mathematics(CBSE) (English Language)	Click here for Playlist	
Class 10 Mathematics(CBSE) (Hindi Language)	Click here for Playlist	
Class 10 Science(CBSE) (Hindi Language)	<u>Click here for Playlist</u>	

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 10)		
Class 10 English (CBSE)	Click here for Playlist	
Class 10 Hindi (CBSE)	Click here for Playlist	
Class 10 Mathematics (CBSE)	Click here for Playlist	
Class 10 Social Science (CBSE)	Click here for Playlist	
Class 10 Magical Science Board Exam Preparation in 1 min (CBSE)	Click here for Playlist	
Class 10: Science (CBSE)	Click here for Playlist	

ANIMATED VIDEOS PLAYLISTS (CLASS 11)		
Class 11 Physics (CBSE) (English Language)	Click here for Playlist	
Class 11 Chemistry (CBSE) (English Language)	Click here for Playlist	
Class 11 Biology (CBSE) (English Language)	Click here for Playlist	
Class 11 Mathematics(CBSE) (English Language)	Click here for Playlist	
Class 11 Accountancy (CBSE) (English Language)	Click here for Playlist	
Class 11 Business Studies (CBSE) (English Language)	Click here for Playlist	
Class 11 Statistics (CBSE) (English Language)	Click here for Playlist	
Class 11 Biology (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Mathematics (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Physics (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Chemistry (CBSE) (Hindi Language)	Click here for Playlist	
Class 11Micro Economy (CBSE) (English Language)	Click here for Playlist	

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 11)	
Class 11Mathematics (CBSE)	Click here for Playlist
Class 11 Accounts (CBSE)	Click here for Playlist
Class 11 Business Studies (CBSE)	<u>Click here for Playlist</u>

Class 11 Hindi (CBSE)	Click here for Playlist
Class 11 Psychology (CBSE)	Click here for Playlist
Class 11 Economics (CBSE)	Click here for Playlist
Class 11 Physics (CBSE)	Click here for Playlist
Class 11 Chemistry (CBSE)	Click here for Playlist
Class 11 English (CBSE)	Click here for Playlist
Class 11 Biology (CBSE)	Click here for Playlist
Class 11 Biology Shorts (CBSE)	Click here for Playlist

ANIMATED VIDEOS PLAYLISTS (CLASS 12)

Class 12 Physics (CBSE)	Click here for Playlist
Class 12 Chemistry (CBSE)	Click here for Playlist
Class 12 Biology(CBSE)	Click here for Playlist
Class 12 Macro Economy (CBSE)	Click here for Playlist
Class 12Economic (CBSE)	Click here for Playlist
Class 12 Mathematics (CBSE)	Click here for Playlist
Class 12 Accountancy (CBSE)	Click here for Playlist
Class 12 Business Studies (CBSE)	Click here for Playlist
Class 12 Physics (CBSE)	Click here for Playlist
Class 12 Mathematics (CBSE)	Click here for Playlist
Class 12 Biology (CBSE)	Click here for Playlist
Class 12 Chemistry (CBSE)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 12)	
Class 12 CHEMISTRY (CBSE)	Click here for Playlist
Class 12 Business Studies (CBSE)	Click here for Playlist
Class 12 Hindi (CBSE)	Click here for Playlist
NEET Biology in 1 min	Click here for Playlist
Class 12 History (CBSE)	Click here for Playlist
Class 12 Political Science (CBSE)	Click here for Playlist
Class 12 Physics (CBSE)	Click here for Playlist
Class 12 Biology (CBSE)	Click here for Playlist
Class 12 : Accounts (CBSE)	Click here for Playlist

SCHOOL OF EDUCATORS

You will get Pre- Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here .Join Your Subject WhatsApp Group.

Rules & Regulations of the Group

- 1. No introduction
- 2. No Good Morning/Any wish type message
- 3.No personal Chats & Messages
- 4. No Spam
- 5. You can also ask your difficulties here.

Just get learning resources & post learning resources. Helpline number only WhatsApp: +91-95208-77777

Julearn /

Why Artham Resource Material?

Resource materials for teachers and students are essential tools for effective teaching and learning. They provide valuable information, guidance, and support to both teachers and students, making the teaching and learning process more efficient and productive.

For teachers, Artham resource materials include lesson plans, instructional guides, assessment tools, professional development materials, and teaching aids. These materials are well researched and created according to 2023-24 NEP and NCERT guidelines.

For students, resource materials can include textbooks, study guides, homework assignments, reference books, online learning platforms, and educational videos. These materials can be obtained from school libraries, educational publishers, online resources, and teachers.

Both teachers and students can also benefit from Artham educational resources which are free and openly licensed educational materials that can be used and shared for teaching and learning. Artham resource material include textbooks, courses, lesson plans, and multimedia resources that are available online.

In summary, resource materials are critical components of effective teaching and learning. They provide a wealth of information and support that can enhance the quality of education and help students achieve academic success.

Teachers and students can also purchase these resources from the links provided with every resource.

JOIN TELEGRAM GROUP/CHANNELS FOR CLASS WISE HIGH QUALITY RESOURCE MATERIAL

SOE CBSE Groups

- <u>Click to Join CBSE Group...All classes</u>
- <u>Click to Join SOE CBSE Kindergarten Group</u>
- <u>Click to Join SOE CBSE Class 1 Group</u>
- Click to Join SOE CBSE Class 2 Group
- Click to Join SOE CBSE Class 3 Group
- Click to Join SOE CBSE Class 4 Group
- Click to Join SOE CBSE Class 5 Group
- Click to Join SOE CBSE Class 6 Group
- Click to Join SOE CBSE Class 7 Group
- Click to Join SOE CBSE Class 8 Group
- Click to Join SOE CBSE Class 9 Group
- Click to Join SOE CBSE Class 10 Group
- Click to Join SOE CBSE Class 11 (Science) Group
- Click to Join SOE CBSE Class 11 (Commerce) Group
- Click to Join SOE CBSE Class 11 (Humanities) Group
- <u>Click to Join SOE CBSE Class 12 (Science) Group</u>
- <u>Click to Join SOE CBSE Class 12(Commerce) Group</u>

- <u>Click to Join SOE CBSE Class 12 (Humanities) Group</u>
- <u>Click to Join SOE JEE/NEET Group</u>
- <u>Click to Join SOE CUET Group</u>
- <u>Click to Join SOE NDA, OLYMPIAD, NTSE Group</u>
- <u>Click to Join SOE School Principal Professional Development Group</u>
- <u>Click to Join SOE School Teacher Professional Development Group</u>
- <u>Click to Join SOE CBSE Project File Group for Class 9th to 12th All Subjects</u>

SOE ICSE Groups

- <u>Click to Join SOE ICSE Kindergarten Group</u>
- <u>Click to Join SOE ICSE Class 1 Group</u>
- <u>Click to Join SOE ICSE Class 2 Group</u>
- <u>Click to Join SOE ICSE Class 3 Group</u>
- <u>Click to Join SOE ICSE Class 4 Group</u>
- <u>Click to Join SOE ICSE Class 5 Group</u>
- Click to Join SOE ICSE Class 6 Group
- Click to Join SOE ICSE Class 7 Group
- <u>Click to Join SOE ICSE Class 8 Group</u>
- <u>Click to Join SOE ICSE Class 9 Group</u>
- Click to Join SOE ICSE Class 10 Group
- <u>Click to Join SOE ICSE Class 11 (Science) Group</u>
- <u>Click to Join SOE ICSE Class 11 (Commerce) Group</u>
- <u>Click to Join SOE ICSE Class 11 (Humanities) Group</u>
- <u>Click to Join SOE ICSE Class 12 (Science) Group</u>
- <u>Click to Join SOE ICSE Class 12(Commerce) Group</u>
- <u>Click to Join SOE ICSE Class 12 (Humanities) Group</u>
- <u>Click to Join SOE JEE/NEET Group</u>
- <u>Click to Join SOE CUET Group</u>
- <u>Click to Join SOE NDA, OLYMPIAD, NTSE Group</u>
- <u>Click to Join SOE School Principal Professional Development Group</u>
- <u>Click to Join SOE School Teacher Professional Development Group</u>

Nageen CBSE Channels

- <u>Click to Join Nageen CBSE Kindergarten Channel</u>
- <u>Click to Join Nageen CBSE Class 1 Channel</u>
- <u>Click to Join Nageen CBSE Class 2 Channel</u>
- <u>Click to Join Nageen CBSE Class 3 Channel</u>
- <u>Click to Join Nageen CBSE Class 4 Channel</u>
- Click to Join Nageen CBSE Class 5 Channel
- <u>Click to Join Nageen CBSE Class 6 Channel</u>
- Click to Join Nageen CBSE Class 7 Channel
- Click to Join Nageen CBSE Class 8 Channel
- Click to Join Nageen CBSE Class 9 Channel
- Click to Join Nageen CBSE Class 10 Channel
- Click to Join Nageen CBSE Class 11 (Science) Channel
- Click to Join Nageen CBSE Class 11 (Humanities) Channel
- Click to Join Nageen CBSE Class 11 (Commerce) Channel
- Click to Join Nageen CBSE Class 12 (Science) Channel
- <u>Click to Join Nageen CBSE Class 12 (Commerce) Channel</u>
- <u>Click to Join Nageen CBSE Class 12 (Humanities) Channel</u>

- Click to Join JEE/NEET Channel
- <u>Click to Join CUET Channel</u>
- <u>Click to Join NDA, OLYMPIAD, NTSE Channel</u>

Nageen ICSE Channels

- <u>Click to Join Nageen ICSE Kindergarten Channel</u>
- <u>Click to Join Nageen ICSE Class 1 Channel</u>
- <u>Click to Join Nageen ICSE Class 2 Channel</u>
- <u>Click to Join Nageen ICSE Class 3 Channel</u>
- <u>Click to Join Nageen ICSE Class 4 Channel</u>
- <u>Click to Join Nageen ICSE Class 5 Channel</u>
- <u>Click to Join Nageen ICSE Class 6 Channel</u>
- <u>Click to Join Nageen ICSE Class 7 Channel</u>
- <u>Click to Join Nageen ICSE Class 8 Channel</u>
- <u>Click to Join Nageen ICSE Class 9 Channel</u>
- <u>Click to Join Nageen ICSE Class 10 Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Science) Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Commerce) Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Humanities) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Science) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Commerce) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Humanities) Channel</u>
- <u>Click to Join JEE/NEET Channel</u>
- <u>Click to Join CUET Channel</u>
- <u>Click to Join NDA, OLYMPIAD, NTSE Channel</u>