CHAPTER-4 DETERMINANTS 01 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	If $\begin{vmatrix} 3x & 3 \\ 8 & x \end{vmatrix} = \begin{vmatrix} 2 & 4 \\ -3 & 9 \end{vmatrix}$, then x=? a2 b.3 $\sqrt{2}$ c.2 $\sqrt{2}$ d.2	1
2.	At a Party, there were some sandwiches of the same size, Alia took 1 slice of a sandwich. Now to find the area of the sandwich which is taken by Alia? (Using the concept of determinants)	1
3.	For what value of x, the following matrix is singular? $ \begin{bmatrix} 3 - x & 2 \\ x + 1 & 3 \end{bmatrix} $ a. 4/2 b. 7/2 c. 7/5 d. 9/5	1
4.	A matrix A of order 3 x 3 has determinant 8. What is the value of 4A a. 613 b. 421 c. 512 d. 291	1
5.	A Boy Monty brought 2 Bags, 1 Pen and 3 pencils and Paid 25 rupees, In same shop Nihar bought 3 bags, 2 pens & 1 Pencil and Paid 40 rupees and Pabitra brought 1 Bag, 3 pens & 2 Pencil and paid 30 rupees. Now construct the matrix formation.	1

	$a \begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$ $b \begin{bmatrix} 2 & 1 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$ $c \begin{bmatrix} 2 & 1 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \end{bmatrix}$ $d \begin{bmatrix} 2 & 3 & 1 \\ 3 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$	
6.	Write the value of $ cos40 sin50 $ $ sin40 cos50 $ a.0b. 1C. 2d. None of the above	1
7.	Find values of K if area of triangle is 9 sq. units and vertices are $(4, k), (2,0), (3,1)$ a. K= 16b. K = 8c. k= 7d. k = -16d. k = -16d. k = -16d. k = -16	1
8.	 Assertion & Reason based questions (i) Assertion: A square matrix is called determinant. R= Reason: A matrix has order 3 X 3, which is known as square matrix a. Both A and R are individually true and R is the correct explanation of A b. Both A and R are individually true & R is not the correct explanation of A c. A is true but R is false d. A is false but R is true 	1
9.	Rita went to market and bought 2 Kurtis and 1 jean, and Preeti also went to market and bought 1 Kurti and 3 jeans Solve the above question using determinant method	1

	(1) The order of the above matrix. a. 3X3 b.2X2 c.2X1 d.1X2	
10.	Find the determinant of above matrixa. $ A =3$ b. $ A =4$ c. $ A =5$ d. $ A =7$	1
11.	Let A be a square matrix of order 3×3 such that $ A = 2$, then the value of $ 4A $?	1
12.	(a) 128 (b) 64 (c) 8 (d) 16 $ 2 \ 0 \ 1 $	
	The co-factor of a_{32} in the determinant $\begin{bmatrix} 2 & 0 & 1 \\ 5 & 3 & 8 \end{bmatrix}$ is ?	
	3 2 1	1
	(a) 11 (b) -11 (c) 12 (d) 10	
13.	$\begin{bmatrix} 3p & -6 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	
	If $\begin{bmatrix} 3p & -6 \\ 1 & 2 \end{bmatrix}$ is a singular matrix, then the value of 'p' is	1
	(a) 2 (b) 3 (c) 0 (d) 1	
14.	(a) 2 (b) 3 (c) 0 (d) 1 If $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, then the value of $ adj.A $ is ?	
	If $A = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$, then the value of $ adj.A $ is ?	1
	$\begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$	
15.	(a) 2^4 (b) 2^6 (c) 2^3 (d) 2^{12} . If $A = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix}$, then $ A^T = ?$	
		1
	(a) 2 (b) -2 (c) $\frac{1}{2}$ (d) $\frac{-1}{2}$	
16.	If A is a skew symmetric matrix of order 3, then the value of $ A $ is ?	
	(a) 1 (b) 2 (c) 2 (d) 0	1
	(a) 1 (b) 3 (c) 2 (d) 0	

17.		
	The system of equations $2x + y - 3z = 5$; $3x - 2y + 2z = 5$; $5x - 3y - z = 16$ is ?	
	(a) consistent(b) consistent with a unique solution	1
	(c) consistent with infinitely many solutions	1
	(d) has its solution lying along x-axis in 3D space	
18.	Let matrix B be the adjoint of a square matrix A, I be the identity matrix of same order as A.	
10.	If k ($\neq 0$) is the determinant of the matrix A, then what is AB equal to?	
	If $\mathbf{x} (\neq 0)$ is the determinant of the matrix \mathbf{x} , then what is $\mathbf{x} \mathbf{b}$ equal to:	1
	$() \mathbf{I} \qquad () \mathbf{I}^2 \mathbf{I} \qquad () (\mathbf{I} / \mathbf{I}) \mathbf{I}$	
	(a) I (b) kI (c) $k^2 I$ (d) $(1/k) I$	
19.	If $(p,q),(r,s)$ and (t,u) are the vertices of $\triangle ABC$ and \triangle denotes the area of $\triangle ABC$ then	
	$\left n + r + t \right ^2$	
	$\begin{vmatrix} p & r & t \\ q & s & u \\ 1 & 1 & 1 \end{vmatrix}^2$ is equal to ?	1
	$\begin{vmatrix} q & s & u \end{vmatrix}$ is equal to ?	1
	(a) $2\Delta^2$ (b) $4\Delta^2$ (c) 2Δ (d) 4Δ	
20		
20.	If A is a square matrix of order 3 and det A = 5 then what is the determinant of $2A^{-1}$?	
	1 2 0 1	1
	(a) $\frac{1}{12}$ (b) $\frac{2}{2}$ (c) $\frac{8}{3}$ (d) $\frac{1}{12}$	
	(a) $\frac{1}{10}$ (b) $\frac{2}{5}$ (c) $\frac{8}{5}$ (d) $\frac{1}{40}$ A is a square matrix of order 3 and $ A = 6$, what be the value of $ 3 adj A $.	
21.	A is a square matrix of order 3 and $ A = 6$, what be the value of $ 3 adj A $.	1
	(a) 972 (b) 216 (c) 36 (d) 27	-
22.	If $\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$, then the possible value(s) of x is /are	
	(-) $(-)$	1
	(a) 3 (b) $\sqrt{3}$ (c) $-\sqrt{3}$ (d) $\sqrt{3}$ & $\sqrt{3}$	_
	$(c) - \sqrt{3}$ $(d) \sqrt{3} & \sqrt{3}$	
23.	If A and B are two non - singular matrices of same order ,then	
	(a) AB is non singular	1
	(b) AB is singular (c) $(AB)^{-1} = A^{-1}B^{-1}$	
		1
		1
24	(c) $(AB) = A = B$ (d) AB is not invertible	1
24.	(d) AB is not invertible $\begin{bmatrix} -2 & 0 & 0 \end{bmatrix}$	1
	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \end{bmatrix}$, then $ adj A $ is	
	(d) AB is not invertible $\begin{bmatrix} -2 & 0 & 0 \end{bmatrix}$	1
	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to	
	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to	
	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to (a) -2 (b) -4 (c) 4 (d) -8	
	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to	1
	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to (a) -2 (b) -4 (c) 4 (d) -8 The matrix $\begin{bmatrix} -2 & -1 & 3 \\ k & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for	
	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to (a) -2 (b) -4 (c) 4 (d) -8 The matrix $\begin{bmatrix} -2 & -1 & 3 \\ k & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for (a) k= -1 (b) k = 1	1
25.	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to (a) -2 (b) -4 (c) 4 (d) -8 The matrix $\begin{bmatrix} -2 & -1 & 3 \\ k & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for (a) k = -1 (b) k = 1 (c) k = 0 (d) k \in R - \{1\}	1
	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to (a) -2 (b) -4 (c) 4 (d) -8 The matrix $\begin{bmatrix} -2 & -1 & 3 \\ k & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for (a) k = -1 (b) k = 1 (c) k = 0 (d) k \in R - \{1\} Three points P(2x,x+3), Q(0,x) and R(x+3,x+6) are collinear, then x is	1
25. 26.	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to (a) -2 (b) -4 (c) 4 (d) -8 The matrix $\begin{bmatrix} -2 & -1 & 3 \\ k & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for (a) k = -1 (b) k = 1 (c) k = 0 (d) k \in R - \{1\} Three points P(2x,x+3),Q(0,x) and R(x+3,x+6) are collinear, then x is (a) 0 (b) 2 (c) 3 (d) 1	1
25. 26. 27.	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to (a) -2 (b) -4 (c) 4 (d) -8 The matrix $\begin{bmatrix} -2 & -1 & 3 \\ k & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for (a) k = -1 (b) k = 1 (c) k = 0 (d) k \in R - \{1\} Three points P(2x,x+3), Q(0,x) and R(x+3,x+6) are collinear, then x is (a) 0 (b) 2 (c) 3 (d) 1 [x 2 3]	1
25. 26. 27.	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to (a) -2 (b) -4 (c) 4 (d) -8 The matrix $\begin{bmatrix} -2 & -1 & 3 \\ k & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for (a) k = -1 (b) k = 1 (c) k = 0 (d) k \in R - \{1\} Three points P(2x,x+3), Q(0,x) and R(x+3,x+6) are collinear, then x is (a) 0 (b) 2 (c) 3 (d) 1 If x = -4 is a root of $\begin{bmatrix} x & 2 & 3 \\ 1 & x & 1 \end{bmatrix} = 0$ then the sum of other two root is	1 1 1 1
25. 26. 27.	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to (a) -2 (b) -4 (c) 4 (d) -8 The matrix $\begin{bmatrix} -2 & -1 & 3 \\ k & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for (a) k = -1 (b) k = 1 (c) k = 0 (d) k \in R - \{1\} Three points P(2x,x+3), Q(0,x) and R(x+3,x+6) are collinear, then x is (a) 0 (b) 2 (c) 3 (d) 1 If x = -4 is a root of $\begin{bmatrix} x & 2 & 3 \\ 1 & x & 1 \\ 3 & 2 & x \end{bmatrix} = 0$ then the sum of other two root is	1
25. 26. 27.	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to (a) -2 (b) -4 (c) 4 (d) -8 The matrix $\begin{bmatrix} -2 & -1 & 3 \\ k & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for (a) k = -1 (b) k = 1 (c) k = 0 (d) k \in R - \{1\} Three points P(2x,x+3), Q(0,x) and R(x+3,x+6) are collinear, then x is (a) 0 (b) 2 (c) 3 (d) 1 If x = -4 is a root of $\begin{bmatrix} x & 2 & 3 \\ 1 & x & 1 \\ 3 & 2 & x \end{bmatrix} = 0$ then the sum of other two root is (a) 4 (b) -3	1 1 1 1
25. 26. 27.	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to (a) -2 (b) -4 (c) 4 (d) -8 The matrix $\begin{bmatrix} -2 & -1 & 3 \\ k & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for (a) k = -1 (b) k = 1 (c) k = 0 (d) k \in R - \{1\} Three points P(2x,x+3), Q(0,x) and R(x+3,x+6) are collinear, then x is (a) 0 (b) 2 (c) 3 (d) 1 If x = -4 is a root of $\begin{bmatrix} x & 2 & 3 \\ 1 & x & 1 \\ 3 & 2 & x \end{bmatrix} = 0$ then the sum of other two root is (a) 4 (b) -3 (c) 2 (d) 5	1 1 1 1
25. 26. 27.	(d) AB is not invertible If A is a square matrix of order 3 such that A (adj A) = $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then $ adj A $ is equal to (a) -2 (b) -4 (c) 4 (d) -8 The matrix $\begin{bmatrix} -2 & -1 & 3 \\ k & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for (a) k = -1 (b) k = 1 (c) k = 0 (d) k \in R - \{1\} Three points P(2x,x+3), Q(0,x) and R(x+3,x+6) are collinear, then x is (a) 0 (b) 2 (c) 3 (d) 1 If x = -4 is a root of $\begin{bmatrix} x & 2 & 3 \\ 1 & x & 1 \\ 3 & 2 & x \end{bmatrix} = 0$ then the sum of other two root is (a) 4 (b) -3	1 1 1 1 1

	(a) 8 (b) -8 (c) $8, -8$ (d) 4	
29.	If A and B are square matrices of the order 3, such that $ A = 2$ and $AB = 2I$, Then the	
	value of $ B $.	
		1
	(a) 2 (b) 1	
	(c) 4 (d) 8	
30.	If $A = (a_{ij})$ is a square matrix of order 3 and A_{ij} is the cofactor of a_{ij} , then $ A $ is given by	1
	(A) $a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33}$	
	(B) $a_{11}A_{11} + a_{12}A_{21} + a_{13}A_{31}$	
	(C) $a_{21}A_{11} + a_{22}A_{12} + a_{23}A_{13}$	
	(D) $a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$	
31.	If the points $(2, -3)$, $(k, -1)$ and $(0, 4)$ are collinear, then find the value of 4k.	1
51.	(a) 4 (b) $7/140$ (c) 47 (d) $40/7$	1
	(a) + (b) //1+0 (c) + (d) +0/7	
32.	If A is a singular matrix, then A(adjA) is	1
	(a) null matrix (b) scalar matrix (c). identity matrix (d) none of these	
33.	If A and B are invertible matrices, then which of the following is not correct?	1
JJ.	(a) add $\Delta = \Delta \Delta^{-1}$ (b) det $(\Delta)^{-1} = [det (\Delta)]^{-1}$	1
	(a) auj $A = A \cdot A$ (b) uct $(A) = [uct (A)]$ (c) $(A D)^{-1} = D^{-1} A^{-1}$ (d) $(A + D)^{-1} = D^{-1} + A^{-1}$	
	(a) adj $A = A .A^{-1}$ (b) det $(A)^{-1} = [det (A)]^{-1}$ (c) $(AB)^{-1} = B^{-1}A^{-1}$ (d) $(A + B)^{-1} = B^{-1} + A^{-1}$ If A is a skew- symmetric matrix of order 3 and $ A = x$, then $(2023)^x$ is equal to	<u> </u>
34.		1
	(a) 2023 (b) $\frac{1}{2023}$ (c) $(2023)^x$ (d) 1	
35.	Which of the following is not true	1
55.	(A). If $A = [a_{ij}]$ is a diagonal matrix of order $n \ge 2$, then $ A = a_{11}$. a_{22} a_{nn}	1
	(B). If A and B are square matrix of same order, then $ AB = A B $	
	(C).If A is a square matrix of order n then $ \mathbf{k}\mathbf{A} = \mathbf{k}^n \mathbf{A} $	
	(D). If A and B are square matrix of same order, then $ A + B = A + B $	
36.	A system of linear equations $AX = B$ is said to be inconsistent, if the system of equations	1
	has	
	(a) Trivial Solution (b) Infinite Solutions	
	(c) No Solution (d) Unique Solutions	
37.	If $A = (a_{ij})$ be a square matrix of order 3 and $ A = -7$, then the value of $a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33}$,	1
37.		1
	where A_{ij} is the cofactor of a_{ij} , is	
	7 (b) -7 (c) 0 (d) 1	
38.	If $A = \begin{bmatrix} x & 4 \\ 3 & x \end{bmatrix}$ and $ A^3 = 64$, then the value of x is	1
20	± 2 (b) ± 4 (c) ± 8 (d) ± 1	
39.	If A is an invertible matrix, then which of the following is not true $(1 - 1)^2 = (1 - 1)^2 = (1 - 1)^2 = (1 - 1)^2$	1
	(a) $(A^{-1})^2 = (A^2)^{-1}$ (b) $(A^t)^{-1} = (A^{-1})^t$	
	(a) $(A^{-1})^{-1} = (A^{-1})^{-1}$ (b) $(A^{-1})^{-1} = (A^{-1})^{-1}$ (c) $ A \neq 0$ (d) $ A^{-1} = A ^{-1}$ [1 -1 2]	_
		1
40.		
40.	A = $\begin{bmatrix} 0 & 2 & -3 \end{bmatrix}$, find the co-factors of elements of A.	
	A = $\begin{bmatrix} 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$, find the co-factors of elements of A.	
40.	A = $\begin{bmatrix} 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$, find the co-factors of elements of A.	1
41.	$A = \begin{bmatrix} 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$, find the co-factors of elements of A. If $ A = \begin{vmatrix} 2 & 5 \\ 3 & -2 \end{vmatrix}$ then find $ A^{-1} $.	
	$A = \begin{bmatrix} 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$, find the co-factors of elements of A. If $ A = \begin{vmatrix} 2 & 5 \\ 3 & -2 \end{vmatrix}$ then find $ A^{-1} $. If A and B are square matrices of order 3 such that $ A = -1$, $ B = 3$, then find the value of	1
41. 42.	$A = \begin{bmatrix} 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$, find the co-factors of elements of A. If $ A = \begin{vmatrix} 2 & 5 \\ 3 & -2 \end{vmatrix}$ then find $ A^{-1} $. If A and B are square matrices of order 3 such that $ A = -1$, $ B = 3$, then find the value of $ 2AB $.	1
41.	$A = \begin{bmatrix} 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$, find the co-factors of elements of A. If $ A = \begin{vmatrix} 2 & 5 \\ 3 & -2 \end{vmatrix}$ then find $ A^{-1} $. If A and B are square matrices of order 3 such that $ A = -1$, $ B = 3$, then find the value of	

45.	If A is a skew-symmetric matrix of order 3, then find the value of A .	1
46.	Let $A = [a_{ij}]$ be a square matrix of order 3×3 . Find the value of $a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23}$	1
47	where A_{ij} is the cofactor of element a_{ij} .	1
47.	If A is a square matrix of order 2 such that $A^2=2A$, then find the value of $ A $.	1
48.	A company produces three products every day. Their production on a certain day is 45 tons.	1
	It is found that the production of the third product exceeds the production of the first product	
	by 8 tons while the total production of the first and third product is twice the production of	
	the second product.	
	Using the concents of matrices and determinents, answer the following question	
	Using the concepts of matrices and determinants, answer the following question.	
	If x, y and z respectively denote the quantity (in tons) of first, second and third product	
	produced, then which of the following is true? (a) $x + y + z = 45$ (b) $x + 8 = z$ (c) $2y + z = 0$ (d) all of these	
49.	(a) $x + y + z = 45$ (b) $x + 8 = z$ (c) $-2y+z=0$ (d) all of these How many solutions does the system of equations $x + 2y=11$, $-2x-4y=22$ have?	1
<u> </u>	Which of the following is not correct?	1
50.	(a) $ A = A^T $, where $A = [a_{ij}]_{3\times 3}$	1
	(b) $ kA = k^3 A $, where $A = [a_{ij}]_{3\times 3}$	
	(c) If A is a skew-symmetric matrix of odd order, then $ A = 0$.	
	(d) $\begin{vmatrix} p+q & r+s \\ t+u & v+w \end{vmatrix} = \begin{vmatrix} p & r \\ t & v \end{vmatrix} + \begin{vmatrix} q & s \\ u & w \end{vmatrix}$	
	t+u v+w = t v + u w	
51.		1
51.	If A is a invertible matrix, then which of the following is not true	1
	(a) $(A^2)^{-1} = A^{-2}$	
	(b) $ A^{-1} = A ^{-1}$	
	(c) $(A^T)^{-1} = (A^{-1})^T$	
	(d) $ A \neq 0$	
52.	The system of linear equations	1
	x + y + z = 2	
	2x + y - z = 3 3x + 2y + kz = 4	
	has a unique solution if	
	(a) $k \neq 0$	
	(b) (b) $-1 < k < 1$	
	(c) $-2 < k < 2$	
	k = 0	
53.	For any 2×2 matrix, if A (adj A) = $\begin{bmatrix} 10 & 0\\ 10 & 10 \end{bmatrix}$, then $ A =$	1
	(a) 20	
	(b) 100	
	(c) 10	
	(d) 0	
E /I	Which of the following is not correct in a given determinent of A where $A = \begin{bmatrix} a \\ 1 \end{bmatrix}$	1
54.	Which of the following is not correct in a given determinant of A, where $A = [a_{ij}]_{3\times 3}$ (a) Order of minor is less than order of the det (A)	1
	(b) Minor of an element can never be equal to cofactor of the same element	
	(c) Value of a determinant is obtained by multiplying elements of a row or column by	

	(d) Order of minors and cofactors of elements of A is same	
55.	The existence of the unique solution of the system of equations: $x + y + z = \beta$ $5x - y + \mu z = 10$ $2x + 3y - z = 6 \text{ depends on}$ $\mu \text{ only} (b) \ \beta \text{ only} (c) \ \mu \text{ and } \beta \text{ both } (d) \text{neither } \mu \text{ nor } \beta$	1
56.	$\mu \text{ only (b) } \beta \text{ only (c) } \mu \text{ and } \beta \text{ both (d)neither } \mu \text{ nor } \beta$ If $\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, then (a) $a = 1, b = 1$ (b) $a = \cos 2\theta, b = \sin 2\theta$ (c) $b = \cos 2\theta, a = \sin 2\theta$ None of these	1
57.	Let $A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}$, where $0 \le \theta \le 2\pi$. Then (a) $Det(A) = 0$ (b) (b) $Det(A) \in (2, \infty)$ (c) (c) $Det(A) \in (2, 4]$ (d) $Det(A) \in [2, 4]$	1
58.	If A and B are invertible matrices, which of the following statement is not correct (a) Adj $A = A A^{-1}$ (b) Det $(A^{-1}) = (DetA)^{-1}$ (c) $(A + B)^{-1} = A^{-1} + B^{-1}$ $(AB)^{-1} = B^{-1}A^{-1}$	1
59.	If A is an invertible matrix of order 3, then which of the following is not true (a) $ adjA = A ^2$ (b) $(A^{-1})^{-1} = A$ (c) If BA = CA, then B $\neq C$, where B and C are square matrices of order 3. $(AB)^{-1} = B^{-1}A^{-1}$, where B= $[b_{ij}]_{3\times 3}$ and $ B \neq 0$.	1
60.	1. If A is a Singular Matrix then A(adjA) is(a) Scalar matrix(b) Null matrix(c) Identity matrix (d) None of these	1
61.	If P is a square matrix of order 3, such that P(adjoint P) =10I, then the determinant of adjoint P is equal to (a) 0 (b)1 (c) 10 (d) None of these	1
62.	If A is a square matrix of order 3 and det A=7 what is the value of det (adjoint A)? (a) 39 (b) 49 (c) 30 (d) None of these	1
63.	If A is a non- singular matrix of order 3 and determinant value of A is 3 then determinant value of (2A) is (a) 24 (b) 12 (c) 40 (d) None of these	1
64.	The sum of the products of elements of any row with the co-factors of corresponding elements is equal(a) Adjoint of the matrix(b) 0(c)1(d) Value of the determinant	1

65.	The area of a triangle with vertices (-3,2), (5,4), (k,-6) is 42 sq units . What is the value of k? (a) 6 (b) 5 (c) 7 (d) None of these	1
66.	If A is a square matrix such that square of $A = I$ then inverse of A is (a) A (b) 2A (c) A/2 (d) None of these	1
67.	If $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$ then x is equal to: a) 6 b) ± 6 c)-1 d)-6	1
68.	If A(3,4), B(-7, 2) and C(x, y) are collinear, then:	1
	a) $x+5y+17=0$ b) $x+5y+13=0$ c) $x-5y+17=0$ d) none of these	
69.	 Which of the following is a correct statement? a) Determinant is a square matrix b) Determinant is a number associated to a matrix c) Determinant is a number associated with the order of the matrix 	1
	d) Determinant is a number associated to a square matrix	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	b	1
2.	b	1
3.	С	1
4.	С	1
5.	С	1
6.	а	1
7.	d	1
8.	a	1
9.	b	1
10.	c	1
11.	(a)	1
12.	(b)	1
13.	(d)	1
14.	(b)	1
15.	(a)	1
16.	(d)	1
17.	(b)	1
18.	(b)	1
19.	(b)	1
20.	(c)	1
21.	(a)	1
22.	(a)	1
23.	(a)	1
24.	(c)	1
25.	(b) (d)	1
26. 27.	(d) (a)	1
27.	(d) (c)	1
29.	(c) (c)	1
30.	d	1
31.	d	1
32.	a	1
33.	d	1
34.	d	1
35.	D	1
36.	С	1
37.	С	1
38.	b	1
39.	а	1
40.	The co-factors of elements of A are 2, 9, -6, 0, -2, -1, -1, 3, 2.	1
41.	$ A = \begin{vmatrix} 2 & 5 \\ 3 & -2 \end{vmatrix} = -19$	1/2
	· · · · · · · · · · · · · · · · · · ·	

	A ⁻¹ =1/ A =-1/19	1/2
42.	2AB =8 A B =8x(-1)x3=-24.	1/2 +1/2
42.	$ A = k^3 A $	1
43.	$\frac{ A -A^{2} A }{ A \cdot adj A = A ^{3} I = A ^{3}}$	1
44.	$ A : \operatorname{adj} A = A = A = A $ $A' = -A \Rightarrow A' = -A = (-1)^3 A = - A $	1
45.	$\begin{array}{c} A \rightarrow A \rightarrow A = A = A = A \\ But A' = A \end{array}$	/2
	$\Rightarrow A =- A \Rightarrow A =0$	1/2
46.	$\frac{ A ^{-2}}{a_{11}A_{21}+a_{12}A_{22}+a_{13}A_{23}}$	1
	=0	-
47.	$ A^2 = 2A \Rightarrow A A = 2^2 A \Rightarrow$	1/2
	A = 0 Or A = 4.	1/2
48.	(a) $x + y + z = 45$	
49.	x + 2y = 11, -2x - 4y = 22	
	$\begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 11 \\ 22 \end{pmatrix}$ i e AX=B	
	Det A=0, but det $\begin{pmatrix} 11 & 22 \\ -2 & -4 \end{pmatrix}$ and det $\begin{pmatrix} 1 & 2 \\ 11 & 22 \end{pmatrix}$ both zero	
	So $x + 2y=11$, $-2x-4y=22$ have infinite solutions.	
50.	(d)	1
51.	(a)	1
52.	(a)	1
53.	(c)	1
54.	(b)	1
55.	(a)	1
56.	(b)	1
57.	(d)	1
58.	(c)	1
59.	(c)	1
60.	b	1
61.	c	1
62.	b	1
63.	a	1
64.	d	1
65.	с	1
66.	а	1
67.	b	1
68.	С	1
69.	d	1

CHAPTER-4 DETERMINANTS 02 MARK TYPE QUESTIONS

Q. NO	QUESTIONS	MARK
1.	If W is an imaginary cube root of unity, find the value of	2
		2
	$ \begin{vmatrix} W^2 & W & 1 \\ 1 & W^2 & W \\ W & 1 & W^2 \end{vmatrix} $	
	$ W 1 W^2 $	
2.		2
	If $\Delta = \begin{vmatrix} 2 & 1 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 1 \end{vmatrix}$ Write the cofactors of a_{21} , a_{22} , a_{31} , a_{33}	
	3 2 1	
3.	Prove that	2
	$\begin{vmatrix} x+5 & x & x \\ x & x+5 & x \\ x & x & x+5 \end{vmatrix} = 75x^2 + 125x$	
	$\begin{bmatrix} x & x+5 & x \\ x & x+5 & x \end{bmatrix} = 75x^2 + 125x$	
	1 x x x + 51	
4.	If A is an invertible matrix of order 2, then det is equal (A ⁻¹) to	2
5.	If $\Delta = \begin{vmatrix} 2 & 1 & 3 \\ 4 & 5 & 6 \end{vmatrix}$ Write the cofactors of a_{21} , a_{22} , a_{31} , a_{33}	2
	If $\Delta = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$ Write the cofactors of a_{21} , a_{22} , a_{31} , a_{33}	
6.		
0.	If A is a symmetric matrix and B is skew-symmetric matrix such that $A - B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then	
		2
	find 2 <i>A</i> .	
7.	If A is any matrix such that $A^5 = I$, then find the value of $ A^{-1} $.	2
8.	Evaluate the determinant $\log_4 9 - \log_3 8$	
	Evaluate the determinant $\begin{vmatrix} \log_4 9 & \log_3 8 \\ \log_4 3 & \log_3 512 \end{vmatrix}$.	2
9.	If A is a square matrix of order 3 and $ A = 4$, then find $ adj.(2A) $	2
10.		
10.	If A and B are invertible matrices of order 3 such that $ A = 2$ and $ (AB)^{-1} = \frac{-1}{6}$, then find $ B $.	2
11.		
	If the Matrix A = $\begin{vmatrix} 3 & 1 & -2 \end{vmatrix}$, find $ adjA $ without computing adj A.	2
12.	If the matrix $\begin{bmatrix} x+4 & x & x \\ x & x+4 & x \end{bmatrix}$ is singular,	
	$\begin{bmatrix} x & x + 4 \\ x & x + 4 \end{bmatrix}$ is singular,	2
	find x.	
13.	If $A = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 1 \end{bmatrix}$, show that $A^{-1} = A^2$	2
	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, show that $T = T$	
14.	Find the value(s) of k if the area of the triangle with vertices (-2,0), (0,4) and (0,k) is 4	2
	square unit.	
15.	If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$, be such that $A^{-1} = kA$, then find the value of k.	2
16.	Barun visited three places Kolkata, Bhubaneswar and Bangalore with his younger Karan. He	2
	observed on map that the three places make a straight line. Karan wrote these places as points	

(2x, x + 3), (0, x) and (x + 3, x + 6).	
Bhopal • Madhya Pradesh Chhattis garh Bhubaneswar (Bombay) • Hyderabad Pradesh Pradesh Bangalore Bangalore Bangalore Bangalore Bangalore	
Find the coordinates of Kolkata and Bangalore 17. A square matrix A is invertible if A is non singular.	2
If $A = \begin{bmatrix} 2 & p & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{bmatrix}$, then find the value of p so that A^{-1} exists.	2
 18. The place of Peace and reconciliation, also known as the pyramid of peace and Accord is a 6 high pyramid in Mursultan, the capital of Kazakistan, that serves as anon-demonstrational na spiritual centre and an event house. It has 25 equal smaller equilateral triangles as shown in the server and an event house. It has 25 equal smaller equilateral triangles as shown in the server are an event house. It has 25 equal smaller equilateral triangles as shown in the server are an event house. It has 25 equal smaller equilateral triangles as shown in the server are an event house. It has 25 equal smaller equilateral triangles as shown in the server are an event house. It has 25 equal smaller equilateral triangles are shown in the server are serv	ational figure.
19. It is well known that for a square matrix, $AA^{-1} = A^{-1}A = I$ and $AI = IA = A$. Now find the matrix satisfying the matrix equation $P\begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$,	rix P 2
20. If A(3,4) ,B(7,2) ,C (x, y) are collinear, then write the equation of the line passing the B, C.	rough A, 2
21. Find the Value of cos15 sin15 sin15 cos15	2
22. Write the value of $\Delta = \begin{vmatrix} x + y & y + z & z + x \\ z & x & y \\ -3 & -3 & -3 \end{vmatrix}$	2
23. Given $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ Find A^{-1} .	2
24. Evaluate the product <i>AB</i> where	2

	$A = \begin{vmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{vmatrix} \text{ and } B = \begin{vmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{vmatrix}$	
25.	Suppose A is any 3×3 non-singular matrix and $(A - 3I)(A - 5I) = 0$, where $I =$	2
	I_3 and $O = O_3$. If $\alpha A + \beta A^{-1} = 4$ I, then what will be value of $\alpha + \beta$.	
26.	If $If A = \begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix}$, then what will be the determinant of the matrix $(A^{2016} - 2A^{2015} - $	2
	A^{2014}).	
27.	Given that $A = [a_{ij}]$ is a square matrix of order 3 and $ A = -7$, then find the value of	2
	$\sum_{i=1}^3 a_{i2}A_{i2}.$	
28.	Let A be a square matrix of order 3 such that A (adj A) = $2I$, where I is the identity matrix.	2
	Write the value of $ adjA $.	
29.	Let $\theta = \frac{\pi}{5}$ and $A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. If $B = A + A^4$, then find the value of Det(B).	2
30.	Find the value of y if $\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2y & 4 \\ 6 & y \end{vmatrix}$	2
31.	Find the equation of the line joining $(1, 2)$ and $(3, 6)$ using determinants.	2
32.	Verify $A(adj. A) = (adj. A)A = (det A)$. I for	2
	$A = \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$	
33.	What is the inverse of the matrix $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$?	2
34.	If we find positive integral power of a symmetric matrix then we get which type of matrix-	2
	Symmetric or Skew symmetric?	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	$ \begin{vmatrix} w^{2} & w & 1 \\ 1 & w^{2} & w \\ w & 1 & w^{2} \end{vmatrix} $ $ R_{1} \rightarrow R_{1} + R_{2} + R_{3} \qquad \qquad \begin{vmatrix} w^{2} + w + 1 & w & 1 \\ 1 + w^{2} + w & w^{2} & w \\ w + 1 + w^{2} & 1 & w^{2} \end{vmatrix} $ So we know that $w^{2} + w + 1 = 0$ $ \begin{vmatrix} 0 & w & 1 \\ 0 & w^{2} & w \\ 0 & 1 & w^{2} \end{vmatrix} = 0$	2
2.	$ \begin{vmatrix} w^{2} & w & 1 \\ 1 & w^{2} & w \\ w & 1 & w^{2} \end{vmatrix} $ $ R_{1} \rightarrow R_{1} + R_{2} + R_{3} $ $ \begin{vmatrix} w^{2} + w + 1 & w & 1 \\ 1 + w^{2} + w & w^{2} & w \\ w + 1 + w^{2} & 1 & w^{2} \end{vmatrix} $ So we know that $w^{2} + w + 1 = 0$ $ \begin{vmatrix} 0 & w & 1 \\ 0 & w^{2} & w \\ 0 & 1 & w^{2} \end{vmatrix} = 0$	2
3.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2

4.	A is invertible $AA^{-1} = I$ det $(AA^{-1}) = det (I)$ det A.(det $A^{-1}) = det (\sqrt{2}) [AB = A B]$ $det A^{-1} = \frac{1}{det A} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0 i.e. I = 1 \right\}$	2
5.	$\begin{vmatrix} x + 5 & x & x \\ x & x + 5 & x \\ x & x & x + 5 \end{vmatrix}$ $\begin{vmatrix} x + 5 & x & x \\ x & x & x + 5 \end{vmatrix}$ $\begin{vmatrix} 3x + 5 & x & x \\ 3x + 5 & x & x \\ 3x + 5 & x & x + 5 \end{vmatrix}$ Taking common (3x+5) from C ₁ $(3x+5) \begin{vmatrix} 1 & x & x \\ 1 & x + 5 & x \\ 1 & x & x + 5 \end{vmatrix}$ $R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1$ $= (3x+5) \begin{vmatrix} 1 & x & x \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{vmatrix}$ Expand R ₃ $(3x+5)5(5x) = 25x(3x+5)$ $= 75x^2 + 125x = R.H.S$	2
6.	$A^{T} = A, B^{T} = -B \text{ and } A - B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Rightarrow (A - B)^{T} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{T}$ $\Rightarrow A^{T} - B^{T} = A + B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \Rightarrow A + B + A - B = \begin{bmatrix} 2 & 5 \\ 5 & 8 \end{bmatrix} \Rightarrow 2A = \begin{bmatrix} 2 & 5 \\ 5 & 8 \end{bmatrix}$ $\therefore 2A = 16 - 25 = -9$	2
7.	$A^{5} = I \implies A^{-1}.A^{5} = A^{-1}.I \implies A^{4} = A^{-1}$ $\implies A^{-1} = A^{4} = A ^{4} = 1^{4} = 1$	2
8.	$\begin{aligned} \log_4 9 &= \frac{\log 9}{\log 4}; \log_3 8 = \frac{\log 8}{\log 3}; \log_4 3 = \frac{\log 3}{\log 4}; \log_3 512 = \frac{\log 512}{\log 3} \\ \begin{vmatrix} \log_4 9 & \log_3 8 \\ \log_4 3 & \log_3 512 \end{vmatrix} = \log_4 9.\log_3 512 - \log_4 3.\log_3 8 = \frac{\log 9}{\log 4} \cdot \frac{\log 512}{\log 3} - \frac{\log 3}{\log 4} \cdot \frac{\log 8}{\log 3} \\ &= \frac{2\log 3}{2\log 2} \cdot \frac{9\log 2}{\log 3} - \frac{\log 3}{2\log 2} \cdot \frac{3\log 2}{\log 3} = 9 - \frac{3}{2} = \frac{15}{2} \end{aligned}$	2
9.	$\therefore adj.A = A ^{n-1} \therefore adj.(2A) = 2A ^{3-1} = 2A ^2 = (2^3 A)^2 = (2^3 \cdot 4)^2 = 2^{10}$	2
10.	$\left \left(AB \right)^{-1} \right = \frac{-1}{6} \Longrightarrow \frac{1}{ AB } = \frac{-1}{6} \Longrightarrow \frac{1}{ A \cdot B } = \frac{-1}{6} \Longrightarrow \frac{1}{2 \cdot B } = \frac{-1}{6} \Longrightarrow \frac{1}{ B } = \frac{-1}{3}$	2

		1
11.	Here Determinant A = $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & -2 \\ 1 & 0 & 3 \end{bmatrix}$ = 1(2-2) + 3(1+3) = 12	2
	A is no singular Adj A = $(12) * (12) = 144$	
12.	Use the determinant expansion and expand the matrix ,find the value of x using simple equation. x = -4/3	2
13.	By definition of matrix b is inverse of A if $AB = I = BA$. Here we have to show that A^2 is inverse of A there it is sufficient to shoe that $A^2 A = I = AA^2$ i.e. $A^3 = I$	2
14.	The absolute value of $\frac{1}{2} \begin{bmatrix} -2 & 0 & 1 \\ 0 & 4 & 1 \\ 0 & k & 1 \end{bmatrix} = 4$ The absolute value of $\frac{1}{2} (-2)(4-k) = 4$ Solving above ,we get $k = 8$ and 0	2
15.	Here $ A = -19$, $adjA = \begin{bmatrix} -2 & -3 \\ -5 & 2 \end{bmatrix}$, $A^{-1} = \frac{1}{ A }adjA$ $\therefore A^{-1} = \frac{-1}{19} \begin{bmatrix} -2 & -3 \\ -5 & 2 \end{bmatrix} \Rightarrow \frac{-1}{19} \begin{bmatrix} -2 & -3 \\ -5 & 2 \end{bmatrix} = \begin{bmatrix} 2k & 3k \\ 5k & -2k \end{bmatrix} \Rightarrow k = \frac{1}{19}$	2
16.	As points are on a straight line $\begin{vmatrix} 2x & x+3 & 1\\ 0 & x & 1\\ x+3 & x+6 & 1 \end{vmatrix} = 0 \Rightarrow -12x + 3(x+3) = 0 \Rightarrow x = 1$ Therefore co-ordinates of Kolkata are (2.4) and Bangalore are (4.8)	2
17.	$A^{-1} \text{ exist if } A \neq 0 \Rightarrow \begin{vmatrix} 2 & p & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{vmatrix} \neq 0 \Rightarrow p \neq \frac{-8}{5}$ Area of a triangle $= \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 3 & \sqrt{3} & 1 \end{vmatrix} = 3\sqrt{3}sq. unit$	2
18.	Area of a triangle $=\frac{1}{2}\begin{vmatrix} 0 & 0 & 1 \\ 3 & \sqrt{3} & 1 \\ 3 & -\sqrt{3} & 1 \end{vmatrix} = 3\sqrt{3}sq.$ unit \therefore area of one of the face of the Pyramid $= 25 \times 3\sqrt{3} = 75\sqrt{3}$ sq. unit	2
19.	$\begin{vmatrix} -3 & 2 \\ 5 & -3 \end{vmatrix} = -1, \ \therefore \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}^{-1} = \frac{1}{-1} \begin{bmatrix} -3 & -2 \\ -5 & -3 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix}$ $\therefore P = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}^{-1} = \begin{bmatrix} 13 & 8 \\ 1 & 1 \end{bmatrix}$	2
20.	$\begin{array}{c} A(3,4) , B(7,2) , C (x, y) \text{ are collinear so} \\ 4(3,4) , B(7,2) , C (x, y) \text{ are collinear so} \\ \frac{3}{12} \begin{vmatrix} 3 & 4 & 1 \\ 7 & 2 & 1 \\ x & y & 1 \end{vmatrix} = 0 \\ 4(y-4)+2(x-3)=0 \end{array}$	1
	2x+4y = 22 is the equation of line passing through A(3,4) ,B(7,2).	1
21.	$Cos^{2}15^{\circ} - sin^{2}15^{\circ}$ $= cos 30^{\circ}$ $= \sqrt{3}/2$	1 1/2 1/2
22.	$\Delta = (x + y)(-3x + 3y)(-(y+z)(-3z+3y))(-(z+x)(-3z+3x)) = 3(y^2 - x^2 - y^2 + z^2 - z^2 + x^2) = = 0$	1
23.		1 1/2
23.	A =10,	/2

	Adj A= $\begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$	1
	$\Rightarrow A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$	1⁄2
24.	$A = \begin{vmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{vmatrix} = 2 + 4 + 0 = 6$	1/2
	and $B = \begin{vmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{vmatrix} = 12 + 24 + 0 = 36$ AB=216	1
		1⁄2
25.	Given, $(A - 3I) (A - 5I) = 0$ Or, $A^2 - 8A + 15I = 0$ Post multiplying by A^{-1} on both sides , we have, $\frac{1}{2}A + \frac{15}{2}A^{-1} = 4I \dots (i)$ Comparing (i) with $\alpha A + \beta A^{-1} = 4I$, $\alpha = \frac{1}{2} \text{ and } \beta = \frac{15}{2}$ $\alpha + \beta = 8$.	2
26.	We have, $A^{2} = \begin{bmatrix} 13 & 3 \\ -9 & -2 \end{bmatrix}$ $ A = -1$ $ A^{2016} - 2A^{2015} - A^{2014} = A^{2014} A^{2} - 2A - I $ $= -25.$	2
27.	A = -7 $\sum_{i=1}^{3} a_{i2}A_{i2} = Determinant of the matrix A expanded along C_2$ = A = -7	2
28.	Since, A. (adj A) = A I So, $A. (adj A) = 2I$ Or, $ A = 2$	2
	Now, $ adj A = A ^{n-1}$ Or, $ adj A = 2^{3-1}$ = 4	
29.	$A^{2} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$	2
	$A^{4} = \begin{bmatrix} \cos 4\theta & \sin 4\theta \\ -\sin 4\theta & \cos 4\theta \end{bmatrix}$ $B = A + A^{4}$	
	$ B = 2 + 2\cos 3\theta$ = $\frac{5-\sqrt{5}}{2} \in (1,2)$	

30.	.+√3, -√3	2
31.	2x-y=0	2
32.	Verification	2
33.	$\begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$	2
34.	symmetric	2

CHAPTER-4 DETERMINANTS 03 MARKS TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Area of a triangle whose vertices are $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) is given by the determinant $\Delta = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$	3
	 Since, area is a positive quantity, so we always take the absolute value of the determinant Δ. Also, the area of the triangle formed by three collinear points is zero. Based on the above information, answer the following questions (i) Find the area of the triangle whose vertices are (-2, 6), (3, -6) and (1, 5). 	
	(a) 30 sq. units (b) 35 sq. units (c) 40 sq. units (d) 15.5 sq. units	
	ii. If the area of a triangle ABC, with vertices A (1, 3), B (O, 0) and C (k, 0) is 3 sq. units, then a value of k is	
	(a) 2 (b) 3 (c) 4 (d) 5	
2.	A Boy Monty brought 2 Bags, 1 Pen and 3 pencils and Paid 25 rupees, in same shop Nihar bought 3 bags, 2 pens & 1 Pencil and Paid 40 rupees and Pabitra brought 1 Bag, 3 pens & 2 Pencil and paid 30 rupees. Multiply by matrix method	3
3.	Using the property of determinants and without expanding, prove that: $\begin{vmatrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{vmatrix} = 0$	3
4.	If $A = \begin{bmatrix} 4 & 2 & 5 \\ 2 & 0 & 3 \\ -1 & 1 & 0 \end{bmatrix}$, then find the determinant of $3AA^{-1}$.	3
5.	Find the matrix X such that $\begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} X \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 0 & 4 \end{bmatrix}$	3
6.	Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$.	3
7.	Find the adjoint of the matrix $A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ and hence show that A(adj A) = A I ₃ .	3
8.	Let $A = \begin{bmatrix} 2 & 3 \\ 1 & , 2 \end{bmatrix}$, $B = \begin{bmatrix} 4 & -6 \\ -2 & 4 \end{bmatrix}$. Then compute AB. Hence solve the equation $2x + y = 4$, $3x + 2y = 1$	3
9.	The monthly incomes of two brothers Sirish and Srijan are in the ratio 3:4 and the monthly expenditures are in the ratio 5:7. Each brother saves Rs. 15000 per month	3

-		
	Using matrix find their monthly income	
10.	On his birthday Rahul decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs. 10 more. However if there were 16 children more, everyone would have got Rs. 10 less.	3
	Using matrix method the number of children and amount ditrbuted by Rahul.	
11.	Show that the points $(a + 5, a - 4)$, $(a - 2, a + 3)$ and (a, a) do not lie on a straight line for any value of a.	3
12.	A school wants to awards its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs. 6000. Three times the award money for Hard work added to that given for Honesty amounts to Rs. 11000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and justify can we find the award money for each value, using matrix method?	3
13.	Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award Rs. <i>x</i> each, Rs. <i>y</i> each and Rs. <i>z</i> each for three respective values to 3, 2 and 1 students respectively with a total award money of Rs. 2200. School B wants to spend Rs. 3100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total 53amount for one prize on each value is Rs. 1200, using matrices, find the award money for each value.	3
14.		3
15.	Let $(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$. Show that $[F(\alpha)]^{-1} = F(-\alpha)$.	3
16.		3

	 Based on the above information, answer the following questions. (i) Convert the given above situation into a matrix equation of the form AX = B. (ii) Find A . (iii) FindA⁻¹. 	
17.	Solve using matrix method $2x-y = 1$, $3x+2y=5$	3
18.	If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ show that $A^2-5A+7I = O$. Hence Find A^{-1} .	3
19.	Using cofactors of element of third columns evaluate $\begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix}$	3

ANSWERS:

Q. NO	ANSWER	MARKS
	According to statement $\begin{array}{l} 3p+2q+r=3000\\ 2p+4q+s=3500\\ P+q+r=1500\\ Converting the system of equations in matrix form, we get \begin{bmatrix} 3 & 2 & 1\\ 3 & 2 & 1\\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ z\\ z\\$	3
2.	Let the cost of 1 bag =x	3
	And the cost of 1 pen =y	
	⇒3x+4y=257	
	\Rightarrow 4x+3y=324	
	Equation (1) × 4: 12x+16y=257×4	

	Equation (2) × 3: 12x+9y=324×3	
	Subtract two equations;	
	⇒7y=56	
	⇒y=8	
	⇒x=75	
	⇒total cost of 1 bag and 10 pens=x+10y=75+80=155	
3.	Applying the Sum Property of determinants, we have $\begin{vmatrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{vmatrix}$ Applying the Sum Property of determinants, we have $\begin{vmatrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{vmatrix} = \begin{vmatrix} x & a & x \\ y & b & y \\ z & c & z \end{vmatrix} + \begin{vmatrix} x & a & a \\ y & b & b \\ z & c & c \end{vmatrix}$ We know, if two rows or columns of a determinant are identical, then the value of the determinant is zero. Since, the two columns in both the determinants are identical, thus its determinant would be zero. $\Rightarrow \begin{vmatrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{vmatrix} = 0+0$ $\Rightarrow \begin{vmatrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{vmatrix} = 0$	3
4.	As $AA^{-1} = I \implies 3AA^{-1} = 3I = 9 I = 9$	3
5.	$\begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} X \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 0 & 4 \end{bmatrix}$ $X \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 2 & -1 \\ 0 & 4 \end{bmatrix} = \frac{1}{15 - 14} a d j \cdot \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 0 & 4 \end{bmatrix}$ $= \begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -16 & 3 \\ 24 & -5 \end{bmatrix}$	3
6.	$= \begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -16 & 3 \\ 24 & -5 \end{bmatrix}$ $Let A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$ $= 1(-\cos^2 \alpha - \sin^2 \alpha) = -(\cos^2 \alpha + \sin^2 \alpha) = -1$ $\Rightarrow A^{-1} \text{ exist.}$ $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$	3

7.	$Adj A = \begin{bmatrix} -3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3 \end{bmatrix}$	2
	Determinant $A = 27$ For correct proof	1
0		1
8.	$AB = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 2I, \Rightarrow A\left(\frac{1}{2}B\right) = I \Rightarrow A^{-1} = \frac{1}{2}B = \frac{1}{2}\begin{bmatrix} 4 & -6 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$	3
	Given system of equations is PX=Q, where $P = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} = A^T$; $X = \begin{bmatrix} x \\ y \end{bmatrix}$; $Q = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$	
	$\therefore X = P^{-1}Q = (A^T)^{-1}Q = (A^{-1})^TQ = \begin{bmatrix} 7\\ -10 \end{bmatrix}$	
	- 10-	
9.	$\therefore x = 7, y = -10$ Let monthly income of Sirish and Srijan be 3x and 4x and their expenditure are 5y and 7y	3
5.	respectively	5
	$\therefore 3x - 5y = 15000, 4x - 7y = 15000$	
	AX=B, where A = $\begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \end{bmatrix}$, $B = \begin{bmatrix} 15000 \\ 15000 \end{bmatrix}$	
	$A^{-1} = \begin{bmatrix} 7 & -5 \\ 4 & -3 \end{bmatrix}, \therefore X = A^{-1}B = \begin{bmatrix} 7 & -5 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 15000 \\ 15000 \\ 15000 \end{bmatrix} = \begin{bmatrix} 30000 \\ 15000 \end{bmatrix}$	
10.	, ∴ income of Sirish = Rs. 90000, income of Srijan = Rs.120000 Let number of children be x and amount for each student be Rs. Y	2
10.	So, $(x - 8)(y + 10) = xy \Rightarrow 5x - 4y = 40$	3
	$(x + 16)(y - 10) = xy \Rightarrow 5x - 8y = -80$	
	AX=B, where A = $\begin{bmatrix} 5 & -4 \\ 5 & -8 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \end{bmatrix}$, $B = \begin{bmatrix} 40 \\ -80 \end{bmatrix}$	
	$A^{-1} = \frac{-1}{20} \begin{bmatrix} -8 & 4\\ -5 & 5 \end{bmatrix}, \therefore \ X = A^{-1}B = \begin{bmatrix} 32\\ 30 \end{bmatrix}$	
11.	No. of students = 32, Amount given to each students = Rs 30 Area of the triangle with the points $(a + 5, a - 4)$ $(a - 2, a + 3)$ and $(a - a)$ as vertices is	
11.	Area of the triangle with the points $(a + 5, a - 4)$, $(a - 2, a + 3)$ and (a, a) as vertices is $ a + 5 - a - 4 - 1 $	
	$\begin{vmatrix} a + 5 & a - 4 & 1 \\ a - 2 & a + 3 & 1 \\ a & a & 1 \end{vmatrix}$	1
		1
	$= \frac{1}{2} [3a+15+2a-8-5a]=7/2$, non-zero value independent of a	
	So points $(a + 5, a - 4)$, $(a - 2, a + 3)$ and (a, a) are not collinear.	1
		1
		1
12.	Let x, y and z be the award money for Honesty, Regularity and Hard work.	3
	Then	
	X+y+z=6000	
	3z + x = 11000	
	z+x-2y=0 (1 1 1)	
	The equations can be presented as AX=B where A= $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 3 \\ 1 & -2 & 1 \end{pmatrix}$	
	$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, B = \begin{pmatrix} 6000 \\ 11000 \\ 0 \end{pmatrix}$	
	$\left(\begin{array}{c} x = \begin{pmatrix} y \\ z \end{pmatrix}, B = \begin{pmatrix} 11000 \\ 0 \end{pmatrix} \right)$	
	Det $A=6$ so the above equations have solutions.	
13.	3x+2y+z=2200; $4x+y+3z=3100$; $x+y+z=1200$	1/2
	$\begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 2200 \\ 2100 \end{bmatrix}$ $\begin{bmatrix} x \\ x \end{bmatrix}$	
	$A = \begin{bmatrix} 4 & 1 & 3 \\ 1 & 1 & 4 \end{bmatrix}$; $B = \begin{bmatrix} 3100 \\ 12202 \end{bmatrix}$; $X = \begin{bmatrix} y \\ y \end{bmatrix}$	1/2
	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1200 \end{bmatrix} \begin{bmatrix} 2^3 \\ -5 \end{bmatrix}$	
	$ \begin{array}{c} 3x+2y+z=2200 \ ; \ 4x+y+3z=3100 \ ; \ x+y+z=1200 \\ A=\begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix} ; B=\begin{bmatrix} 2200 \\ 3100 \\ 1200 \end{bmatrix} ; \ X=\begin{bmatrix} x \\ y \\ z \end{bmatrix} \\ A^{-1}= 1/5 \begin{bmatrix} 2 & 1 & -5 \\ 1 & -2 & 5 \\ -3 & 1 & 5 \end{bmatrix} $	1+1/2
	$\begin{bmatrix} 1 & -3 & 1 & 5 \end{bmatrix}$	

	So x=300,y=400,z=500	1/2
14.	Here, $ B = A^{-1} = -1$ $or, \begin{vmatrix} 5 & 2\alpha & 1 \\ 0 & 2 & 1 \\ \alpha & 3 & -1 \end{vmatrix} = -1$ $Or, 2\alpha^2 - 2\alpha - 24 = 0$ Sum of all values of $\alpha = 1$	3
15.	We have, $[F(\alpha)]^{-1} = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} = F(-\alpha).$	3
16.	Let the cost of 1 pen, 1 bag and 1 instrument box be x, y and z respectively. Then, 4x + 3y + 2z = 60 2x + 4y + 6z = 90 6x + 2y + 3z = 70 The above equations can be written as, AX = B Where $A = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $B = \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}$ Now, $ A = 50 \neq 0$ So, $A^{-1} = \frac{1}{50} \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix}$,	3
17.	x=1 y=1	3
18.	For verification Finding A ⁻¹ = $1/7 \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$	2 1
19.	Value = (x-y)(y-z)(z-x)	3

CHAPTER-4 DETERMINANTS 04 MARK TYPE QUESTIONS

U4 WARK TYPE QUESTIONS	
QUESTION	MARK
 Two schools X and Y want to award their selected students on the values of Hard work, Honesty and Punctuality. The school X wants to award Rupees P each, Rupees q each and Rupees r each for the three respective values to its 3,2 and 1 students respectively with a total award money of Rupees 3000/- School wants to spend rupees 3500/- to award in 2,4 & 3 students on the respective values. The total amount of awards for one prize on each value is Rupees 1500/ Using the concept of Determinants & matrices, Answer the following questions What is the award money for punctuality? 300 a. 500 b. 300 c. 900 d. 1000 	4
	4
Show that, using properties of determinants.	-
$1+a^2-b^2$ 2ab -2b	
2ab $1-a^2+b^2 = 2a = (1+a^2+b^2)^3$	
$2b$ $-2a$ $1-a^2-b^2$	
 A triangular floral design is made up of 36 smaller equilateral triangles as shown in the figure. Using the above information and the concept of determinants, answer the following questions. (i) If the vertices of one of the smaller equilateral triangle are (3,1),(9,3) and (5,3), then the area of such triangle is (a) 4 sq. u (b) 6 sq. u (c) 10 sq. u (d) 8 sq. u (ii) What is the area of design? (a) 72 sq.u (b) 104 sq.u (c) 144 sq. u (d) 10 sq.u (iii) If the vertices of one of the smaller equilateral triangle are (0,0),(3,√3) (3,-√3), then the altitude of such triangle is ? (a) 4 u (b) 6 u (c) 3 u (d) 8 u (iv) If (2,4),(2,6) are two vertices of smaller triangle and its area is 3√3 sq. units, then 	4
	Two schools X and Y want to award their selected students on the values of Hard work, Honesty and Punctuality. The school X wants to award Rupees P each, Rupees q each and Rupees r each for the three respective values to its 3,2 and 1 students respectively with a total award money of Rupees 3000/. School wants to spend rupees 3500/. to award in 2,4 & 3 students on the respective values. The total amount of awards for one prize on each value is Rupees 1500/. Using the concept of Determinants & matrices, Answer the following questions 1) what is the award money for punctuality? a. 500 b. 300 c. 900 d. 1000 II) What is the award money for hard work? a. 200 b. 900 c.800 d. 500 Show that, using properties of determinants. $ 1+a^2-b^2 2ab -2b $ $ 2b -2a 1-a^2+b^2 $ $ 2b -2a 1-a^2-b^2 $ $=(1+a^2+b^2)^3$ A triangular floral design is made up of 36 smaller equilateral triangles as shown in the figure. Using the above information and the concept of determinants, answer the following questions. (i) If the vertices of one of the smaller equilateral triangle are (3,1), (9,3) and (5,3), then the area of such triangle is (a) 4 sq. u (b) 6 sq. u (c) 10 sq. u (d) 8 sq. u (ii) What is the area of design? (a) 72 sq.u (b) 104 sq.u (c) 144 sq. u (d) 10 sq.u (iii) If the vertices of one of the smaller equilateral triangle are (0,0), (3, $\sqrt{3}$) (3, $-\sqrt{3}$), then the altitude of such triangle is ? (a) 4 u (b) 6 u (c) 3 u (d) 8 u

4.	A missile launched to hit its target follows a parabolic path. Its velocity at any instant 't' is	
	given by $v(t) = at^2 + bt + c, 0 \le t \le 100$, where a,b and c are constants. It has been found that	
	given by where a,b and c are constants. It has been found that	
	the velocity at time t=3, t=6 and t=9 seconds are respectively 64,133 and 208 miles per	
	second.	
	$\begin{bmatrix} 9 & 3 & 1 \end{bmatrix}^{-1}$ $\begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$	4
	If $\begin{bmatrix} 9 & 3 & 1 \\ 36 & 6 & 1 \\ 81 & 9 & 1 \end{bmatrix}^{-1} = \frac{1}{18} \begin{bmatrix} 1 & -2 & 1 \\ -15 & 24 & -9 \\ 54 & -54 & 18 \end{bmatrix}$, then answer the following questions.	4
	$\begin{vmatrix} 81 & 9 & 1 \end{vmatrix} = \begin{vmatrix} 18 \\ 54 & -54 & 18 \end{vmatrix}$	
	(i) Find the value of b+c.	
	(ii) Find $v(t)$.	
	(iii) Calculate the speed at time t=15 seconds.	
	(iv) At what time the missile acquires a speed of 784 miles/sec?	
5.	Chandrayaan 3 is the third lunar exploration mission	
	undertaken by the Lindian Space Research Organisation	
	(ISRO). It aims to further expand our understanding of	
	the Moon's surface by deploying a Lander and a rover.	
	During its launch stage, it's follows a definite trajectory	
	and velocity of the rocket can be expressed as a function	
	of time(t) as follows:	
	$v(t) = 140at^2 + 3bt - 130c - M$	
	where a, b and c are constants of unknown values and M accounts for the mass of the rocket	
	which satisfies	
	4a + b - 2c + 58 = 0	
	2a + b - c + 35 = 0	
	-7a - 2b + 4c = 113	
	Use the value of AB to solve the above system of equations and obtain the value of a, b and	
	c.	4
6.	A trust invested some money in two type of bonds . The first bond pays 10% interest and second bond pays 12% interest. The trust received Rs 2400 as interest . However, if trust had	
	interchanged money in bonds they would have got Rs 100 less.	
	Let the amount invested in first type and second type of bond be Rs x and Rs y.	4
	Based on the above information ,answer the following questions;	4
	(i) Write the equations in terms of x and y representing the given information.	
	(ii) Write the matrix equation representing the given information.	
7.	Find the amount invested by trust in first and second bond respectively. Manjit wants to donate a rectangular plot of land for a school in his village. When he was asked to	4
7.	give dimensions of the plot, he told that if its length is decreased by 50 m and breadth is increased by	4
	50 m, then its area will remain same, but if length is decreased by 10 m and breadth is decreased by	
	20m, then its area will decreasey5300 m ²	1

8	Based on the information given above, answer the following questions : i) The value of x(length of rectangular field) is (a) 150 m b) 400 m c) 200 m d) 320 m ii) The value of y (breadth of rectangular field) is (a) 150 m b) 200 m c) 430 m d) 350 m iii) How much is the area of rectangular field? a) 60000 sq m b) 30000 sq m c) 3000 sq m d) 30000 m iv) The equations in terms of x and y are a. $x+y = 50$, $3x-y = 550$ b.x-y=50, $2x+y=550c. x+y= 50$, $2x+y=550d.x+y= 50, 2x+y=550$	
8.	A factory produces three products every day. Their production on a particular day is 45 tones. It is found that production of third product exceeds the production of first product by 8 tons while production of first and third products is twice the production of second product.	.4
9.	 Three shopkeepers Ram Lal, Shyam Lal, and Ghansham are using polythene bags, handmade bags (prepared by prisoners), and newspaper envelopes as carrying bags. It is found that the shopkeepers Ram Lal, Shyam Lal, and Ghansham are using (20,30,40), (30,40,20), and (40,20,30) polythene bags, handmade bags, and newspaper envelopes respectively. The shopkeeper's Ram Lal, Shyam Lal, and Ghansham spent ₹250, ₹270, and ₹200 on these carry bags respectively. 1. What is the cost of one polythene bag? 2. What is the cost of one handmade bag? 3. What is the cost of one newspaper bag? 	4

	Keeping in mind the environmental conditions, which shopkeeper is better?					
10.	A manufacturer	rer makes three types of toys A, B and C. Three machines are needed for this			4	
	purpose and the	time (in m	me (in minutes) required for each toy on the machines is given below:			
	Types of	Machines				
	Toys	Ι	II	III		
	А	20	10	10		
	В	10	20	30		
	С	5	25	15		
	,				rs, 2 hours and 2 hours 30	
	determinants?	ively. How	can you find no	o of the three types of	toys to be produced using	
11.			. [1 2] .	1 1 1 1 1 1 1 1 1 1		4
	Let A be a matri	ix such tha	$\left[\begin{bmatrix} t & A \end{bmatrix}_{0} \end{bmatrix} \left[\begin{bmatrix} t & s & a \\ s \end{bmatrix} \right]$	scalar matrix and $ 3A $	=108 then what will be the	•
	value of A^2 .					
12.	If $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 3 \\ 2 & 3 \end{bmatrix}_{}$	$\begin{bmatrix} 1 & n-1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 78 \\ 2 & 1 \end{bmatrix}$, then find the	e inverse of the matrix	4
		110 11		10 1 1		
	$\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$.					
13.	Three friends R	ahul, Ravi	and Rakesh w	ent to a vegetable m	arket to purchase vegetables.	4
					tal of Rs. 21. Ravi purchased	
					sh purchased 6kg Potato,2kg	
	Onion and 3kg	Brinjal for	a total of Rs. 70			
	(i) If co	st of potat	o, onion and bri	nial are Rs. X. Y and	Z respectively then convert	
		-	into system of l			
			-	in (i) in the form of A	AX=B.	
			potato ,onion a			
	(, 1110		potato ,omon a	na orinjur.		
14.	Gautam buys	5 pens,	3 bags and 1 i	nstruments box an	d pays a sum of Rs 160.	4
	Vikram buys 2	2 pens , 1	bag and 3 ins	trument boxes an	d pays a sum of Rs. 190.	
	Ankur buys 1	pen, 2 ba	gs and 4 instr	rument boxes and	pays a sum of Rs. 250.	
	(i) con	vert the g	iven above si	tuation into systen	n of Linear equations.	
	(ii) Find				·	
	(iii) Find	IA				
L						<u>I</u>

Q. NO ANSWER MARKS According to statement 1. 4 3p+2q+r=3000 2p+4q+3r=3500 p+q+r=1500Converting the system of equations in matrix form, we get [3 2 3 2 4 $\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1500 \end{bmatrix}$ i.e AX=B Where $A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 3 \\ 1 & 1 & 1 \end{bmatrix} X = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$ $B = \begin{bmatrix} 3000 \\ 3500 \end{bmatrix}$ L1500 $|A| = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 3 \end{bmatrix}$ 1 1 1 =3(4-3)-2(2-1)+1(6-4)=3×1-2×1+1×2=3-2+2=3 3≠0 $A^{-1} = \frac{\text{adjA}}{1}$ $X = A^{-1}B$ |A| $adjA = [cofactors of A]^T$ -21 1 cofactors of A = 2 -1 -1 -7 2 8] 2 -1 1 adjA= 2 1 -7 8 2 -1 2 2 -7 1 2 -7 1 $^{-1}$ adjA 2 -1 8 1 A. A 3 8 ^{1}B X=A $\frac{2}{3}$ -7 33 2 3 3 1 3 [3000] 2300 $\begin{bmatrix} \frac{3}{-2} & \frac{3}{-1} & \frac{3}{3} \\ 1000 - 1100 + 1000 \\ 1000 + 2200 - 3500 \end{bmatrix} = \begin{bmatrix} 900 \\ -300 \end{bmatrix}$ l1500J $\lfloor 2000 - 1100 + 4000 \rfloor \lfloor 900 \rfloor$ p=900, q=-300, z=900 2. $R_1 \rightarrow R_1 + b.R_3$ 4

ANSWERS:

	$1+a^2+b^2$ 0 $-b(1+a^2+b^2)$	
	$L.H.S = 2ab \qquad 1-a^2+b^2 \qquad 2a$	
	$2b$ $-2a$ $1-a^2-b^2$	
	Taking common $(1 + a^2 + b^2)$ from R ₁	
	$=1+a^2+b^2$ 2ab $1-a^2+b^2$ 2a	
	$=1+a^{2}+b^{2}$ 2ab $1-a^{2}+b^{2}$ 2a 2b $-2a$ $1-a^{2}-b^{2}$	
	$R_1 \rightarrow R_1 - a.R_3$	
	$=1+a^2+b^2$ 0 $1+a^2+b^2$ $a(1+a^2+b^2)$	
	$=1+a^{2}+b^{2} \begin{vmatrix} 1 & 0 & -b \\ 0 & 1+a^{2}+b^{2} & a(1+a^{2}+b^{2}) \\ 2b & -2a & 1-a^{2}-b^{2} \end{vmatrix}$	
	Taking $(1 + a^2 + b^2)$ common from R ₂	
	$=1+a^{2}+b^{2}$ $\begin{vmatrix} 1 & 0 & -b \\ 0 & 0 & 1 \end{vmatrix}$ a	
	$2b - 2a - 1 - a^2 - b^2$	
	Expending entry R ₁	
	$= (1 + a^{2} + b^{2})^{2} [1(1 - a^{2} - b^{2} + 2a^{2}) - b(-2b)]$	
	$= (1 + a^{2} + b^{2})^{2} [1 + a^{2} - b^{2} + 2b^{2}]$	
	$= (1 + a^{2} + b^{2})^{2} (1 + a^{2} + b^{2})$	
	$=(1+a^2+b^2)^3$	
3.	(i) (a) 4 sq units (ii) (c) 144 sq. units (ii) (c) 3 units (iv) (c) $x = 2 \pm 3\sqrt{3}$	4
	(ii) (c) 5 units (iv) (c) $x = 2 \pm 5\sqrt{5}$	
4.	v(3) = 64, v(6) = 64 and v(6) = 133	4
	$\Rightarrow 9a + 3b + c = 64; 36a + 6b + c = 133 and 81a + 9b + c = 208$	
	In matrix form $\begin{bmatrix} 9 & 3 & 1 \\ 36 & 6 & 1 \end{bmatrix}$, $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 64 \\ 133 \end{bmatrix} \Rightarrow A.X = B \Rightarrow X = A^{-1}B$	
	In matrix form $\begin{bmatrix} 36 & 6 & 1 \\ 81 & 9 & 1 \end{bmatrix}$, $\begin{bmatrix} b \\ c \end{bmatrix} = \begin{bmatrix} 133 \\ 208 \end{bmatrix} \Rightarrow A \cdot X = B \Rightarrow X = A \cdot B$	
	$=\frac{1}{1}$ $\begin{bmatrix} 1 & -2 & 1 \\ -15 & 24 & -9 \end{bmatrix}$ $\begin{bmatrix} 173 \\ 133 \end{bmatrix} = \begin{bmatrix} 20 \\ 20 \end{bmatrix} \Rightarrow a = \frac{1}{3} = 20 \text{ and } c = 1$	
	$=\frac{1}{18}\begin{bmatrix}1 & -2 & 1\\-15 & 24 & -9\\54 & -54 & 18\end{bmatrix}\begin{bmatrix}64\\133\\208\end{bmatrix} = \begin{bmatrix}1/3\\20\\1\end{bmatrix} \Rightarrow a = 1/3; b = 20 \text{ and } c = 1$	
	(i) $\Rightarrow b + c = 21$	
	(ii) $v(t) = \frac{1}{3}t^2 + 20t + 1$	
	(iii) $v(15) = 376 miles / sec$	
	(iv) 27 seconds.	
5.	$\begin{bmatrix} 4 & 1 & -2 \\ 2 & 1 & -1 \end{bmatrix} \times \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -58 \\ -25 \end{bmatrix}$	4
	$A = \begin{bmatrix} 4 & 1 & -2 \\ 2 & 1 & -1 \\ -7 & -2 & 4 \end{bmatrix} X = \begin{bmatrix} a \\ b \\ c \end{bmatrix} B = \begin{bmatrix} -58 \\ -35 \\ 113 \end{bmatrix}$	
	So, $X = A^{-1} B$ Solving the above condition $a = -3$, $b = -12$, $c = 17$	
6.	(i) As per given information : 10x/100 + 12y/100 = 2800	4
L		

[]	10 /100	
	12x/100 + 10y/100 = 2700	
	After simplifying the equations are $5x + 6y = 140000$, $6x + 5y = 135000$	
	(ii) Let $A = \begin{bmatrix} 5 & 6 \\ 6 & 5 \end{bmatrix}$, $X = \frac{x}{y}$ and $B \begin{pmatrix} 140000 \\ 135000 \end{pmatrix}$	
	(iii) Given system on be written as $AX = B$	
	Where $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 6 & 5 \end{bmatrix} = 25 - 36 = -11$	
	-0 5-	
	$\Rightarrow A^{-1} \text{ exist.}$	
	Now, $X = A^{-1}B$	
7.	After solving we get, $x = 10000$ and $y = 15000$ i b ii a iii b iv b	4
		4
8.	4. By given information $x + y + z = 45$, $-x + z = 8$, $x - 2y + z = 0$ In matrix form $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 45 \\ 8 \\ 0 \end{bmatrix}$ 5. We know that $(A')^{-1} = (A^{-1})'$	4
	5. We know that $(A')^{-1} = (A^{-1})^{-1}$ $\therefore \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{bmatrix}^{-1} = \frac{1}{6} \begin{bmatrix} 2 & 3 & 1 \\ 2 & 0 & -2 \\ 2 & -3 & 1 \end{bmatrix}$ 6. $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 2 & 3 & 1 \\ 2 & 0 & -2 \\ 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} 45 \\ 8 \\ 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 66 \\ 90 \\ 114 \end{bmatrix} = \begin{bmatrix} 11 \\ 15 \\ 19 \end{bmatrix}$	
	x : y : z = 11 : 15 : 19	
9.	Let the cost of one polythene bag, one handmade bag, one newspaper bag be R x,y, z	
	respectively.	
	Then	
	20x+30y+40z=250 i e $2x+3y+4z=25$	
	30x+40y+20z=270 i e 3x+4y+2z=27	
	40x+20y+30z=200 i e $4x+2y+3z=20$	
	These can be written as	
	AX=B where	
	$(2 \ 3 \ 4) (x) (25)$	
	$A = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & 2 \\ 4 & 2 & 3 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, B = \begin{pmatrix} 25 \\ 27 \\ 20 \end{pmatrix}$	
	Det A=16-3-40=-27,	
	Adj A= $\begin{pmatrix} -1 & -16 & 8 \\ -10 & 8 & -1 \end{pmatrix}$, A ⁻¹ =Adj A / det A	
	$Adj A = \begin{pmatrix} 8 & -1 & -10 \\ -1 & -16 & 8 \\ -10 & 8 & -1 \end{pmatrix}, A^{-1} = Adj A / \det A$ $X = A^{-1} B = 1/(-27) \begin{pmatrix} 8 & -1 & -10 \\ -1 & -16 & 8 \\ -10 & 8 & -1 \end{pmatrix} \begin{pmatrix} 25 \\ 27 \\ 20 \end{pmatrix} = \begin{pmatrix} 1 \\ 11 \\ 2 \end{pmatrix}$	
	X=1,y=11,z=2	
	1. cost of one polythene bag=Rs 1	
	2. cost of one handmade bag=Rs 11	
	3. cost of one newspaper bag=Rs 2	1
	newspaper bag is better for environment.	1
		1
		1
10.	Let no of the three types of toys be x, y, z.	1⁄2
	20x+10y+5z=180, 10x+20y+25z=120, 10x+30y+15z=120	
		1⁄2

	$(20, 10, 5)$ $[180]$ r_{13}	
	AX=B where A= $\begin{pmatrix} 20 & 10 & 5\\ 10 & 20 & 25\\ 10 & 30 & 15 \end{pmatrix}$, B= $\begin{bmatrix} 180\\ 120\\ 120 \end{bmatrix}$; X= $\begin{bmatrix} x\\ y\\ z \end{bmatrix}$	1⁄2
	$ \begin{array}{c} \det A = -1500 \\ Adj A = \begin{pmatrix} -450 & 0 & 150 \\ 100 & 250 & -450 \end{pmatrix}, A^{-1} = Adj A / \det A \end{array} $	1⁄2
	$ \begin{array}{l} \operatorname{Adj} A = \begin{pmatrix} -450 & 0 & 150 \\ 100 & 250 & -450 \\ 100 & -500 & 300 \end{pmatrix}, A^{-1} = \operatorname{Adj} A / \det A \\ X = A^{-1} B = 1/(-1500) \begin{pmatrix} -450 & 0 & 150 \\ 100 & 250 & -450 \\ 100 & -500 & 300 \end{pmatrix} \begin{bmatrix} 180 \\ 120 \\ 120 \\ 120 \end{bmatrix} = \begin{bmatrix} 42 \\ 40 \\ 40 \end{bmatrix} $	1
	So x=42,y=40,z=40	1
11.	Let, $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ According to the given condition, $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} \gamma & 0 \\ 0 & \gamma \end{bmatrix}$ for some scalar γ . Or, $a = \gamma$, $2c + 3d = \gamma$, $c = 0$, $2a + 3b = 0$ Therefore, $a = \gamma, b = \frac{-2\gamma}{3}$, $c = 0$, $d = \frac{\gamma}{3}$ 3A = 108 Or, $ A = 12$ Also, $ A = \frac{\gamma^2}{3}$ So, $\frac{\gamma^2}{3} = 12$ Or, $\gamma = \pm 6$ Therefore, $A = \begin{bmatrix} 6 & -4 \\ 0 & 2 \end{bmatrix}$ When $\gamma = 6$ $A^2 = \begin{bmatrix} 36 & -32 \\ 0 & -4 \end{bmatrix}$	4
12.	$A = \begin{bmatrix} 0 & 4 \end{bmatrix}$ Given, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \cdots \begin{bmatrix} 1 & n-1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 78 \\ 0 & 1 \end{bmatrix}$ Or, $\begin{bmatrix} 1 & 1+2+3+\dots+(n-1) \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 78 \\ 0 & 1 \end{bmatrix}$ Or, $\begin{bmatrix} n(n-1) \\ 2 \end{bmatrix} = 78$ Or, $n = 13 \text{ as } n \neq -12$ $\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 13 \\ 0 & 1 \end{bmatrix} = A(Say)$ Therefore, $A^{-1} = \begin{bmatrix} 1 & -13 \\ 0 & 1 \end{bmatrix}$	4

13.	(i) $x + y + z = 21$, $4x + 3y + 2z = 60$, $6x + 2y + 3z = 70$	1
	(<i>ii</i>) $\begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & 2 \\ 6 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 21 \\ 60 \\ 70 \end{bmatrix}$ (<i>iv</i>) $x = \text{Rs } 5$, $y = \text{Rs } 8$, $z = \text{Rs} . 8$	1 2
14.	(i) $5x + 3y + z = 160$, $2x + y + 3z = 190$, $x + 2y + 4z = 250$	1
	(ii) IAI= -22	1
	(ii) IAI= -22	2
	(iii) $A^{-1} = \frac{1}{22} \begin{bmatrix} 2 & 10 & -8 \\ 5 & -19 & 13 \\ -3 & 7 & 1 \end{bmatrix}$	

CHAPTER-4 DETERMINANTS 05 MARKS TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.		5
1.	Show that $\begin{vmatrix} 1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1 \end{vmatrix} = (1 - x^{3})^{2}$	5
2.	$\begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix} = (x-y) (y-z) (z-x) (xy+yz+zx).$	5
3.	$\begin{bmatrix} 12 & 2^{-} & xy \end{bmatrix}$ Given $A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$, find AB and use it to solve the system of equations: $x - y + z = 4$; $x - 2y - 2z = 9$ and $2x + y + 3z = 1$.	5
4.	Radhika buys 5 pencils, 3 rulers and 1bottle and pays a sum of ₹160. Amit buys 2 pencils, 1 ruler and 3 bottles for ₹190. Also Ankit buys 1 pencil, 2 rulers and 4 bottles for ₹ 250. Express the above in matrix form and find the cost of each article.	5
5.	Solve the following system of equations, using matrix method; $\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4; \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1; \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2$	5
6.	A square matrix A is invertible if A is non singular and $A^{-1} = \frac{1}{ A } a djA$ If $A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$, find A^{-1} . Using A^{-1} solve the system of equations x - y = 3; $2x + 3y + 4z = 17$; $y + 2z = 7$	5
7.	The management committee of GOKUL DHAM SOCIETY decided to award some of its members (say x) for honesty, some (say y) for helping others and some others(say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times of the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. The sum of number of awardees for honesty and supervision is twice the number of awardees for helping	5

	Find the number of awardees for each honesty, cooperation and supervision. Also find the value of $2x + 3y + 5z$	
8.	Solve the system of equations: x+y+z=6000; $x+3z=11000$; $x-2y+z=0$	5
9.	Solve the following equations by using matrix method $\frac{1}{u} + \frac{1}{v} + \frac{1}{w} = 12, \frac{3}{v} + \frac{3}{w} + \frac{2}{u} = 33, \frac{1}{u} + \frac{1}{w} = \frac{2}{v}$	5
10.	Two factories decided to award their employees for three values of (a) adaptable to new techniques, (b) careful and alert in difficult situations and (c) keeping calm in tense situations, at the rate of Rs. x, y and z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of Rs.29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of Rs.30500. If the three prizes per person together cost Rs. 9500, then (i) Represent the above situation by a matrix equation and form linear equations using matrix multiplication. (ii) Solve these equations using matrices. (iii) Which values are reflected in the questions?	5
11.	A mixture is to be made of three foods A, B, C. The three foods A, B, C contain nutrients P.Q, R as shown below: Ounces per pound of Nutrient Food P Q R A 1 2 5 B 3 1 1 C 4 2 1 How to form a mixture which will have 8 ounces of P, 5 ounces of Q and 7 ounces of R?	5
12.	If $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$ find A^{-1} . Hence solve the given equations $2x - 3y + 5z = 11$; 3x + 2y - 4z = -5; x + y - 2z = -3.	5

13.	Given that $A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$, find AB and use it to solve the system	5
	of equations:	
	x - y + z = 4; x - 2y - 2z = 9; $2x + y + 3z = 1$	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	$C_1 \rightarrow C_1 + C_2 + C_3$	5
	$1+x+x^2$ x x^2	
	$= 1 + x + x^{2} + x + x^{2} $	
	$1 + x + x^2 + x^2 + 1$	
	$1 \times x^2$	
	$=(1+x+x^2)$ 1 1 x	
	$= (1+x+x^{2}) \begin{vmatrix} 1 & x & x^{2} \\ 1 & 1 & x \\ 1 & x^{2} & 1 \end{vmatrix}$	
	$R_1 \rightarrow R_1 - R_3$ $R_2 \rightarrow R_2 - R_3$	
	$0 x - x^2 x^2 - 1$	
	$=(1+x+x^2)$ 0 0 1-x ² x-1	
	$= (1+x+x^{2}) \begin{vmatrix} 0 & x-x^{2} & x^{2}-1 \\ 0 & 1-x^{2} & x-1 \\ 1 & x^{2} & 1 \end{vmatrix}$	
	$= (1+x+x^{2}) \begin{vmatrix} 0 & x(1-x) & -(1-x)(1+x) \\ 0 & (1-x)(1+x) & -(1-x) \\ 1 & x^{2} & 1 \end{vmatrix}$	
	$1 x^2 1$	
	Taking $(1 - x)$ common from R_1 and R_2	
	0 x -(1+x)	
	$= (1+x+x^{2})(1-x)^{2} \begin{vmatrix} 0 & x & -(1+x) \\ 0 & 1+x & -1 \\ 1 & x^{2} & 1 \end{vmatrix}$	
	L X ⁻ I	
	Expending along C ¹ = $(1+x+x^2)(1-x)^2[-x+(1+x)^2]$	
	$= (1+x+x^{2})(1-x)^{2}(-x+1+x^{2}+2x)$	
	$= (1-x)(1+x+x^{2})(1-x)(1+x+x^{2})$	
	$=(1-x^3)^2$	
2		-
2.	$R_1 \rightarrow R_1 - R_3, \qquad R_2 \rightarrow R_2 - R_3$	5
	$(x-z)$ $(x^{-}-z^{-})$ $yz-xy$	
	$= \begin{vmatrix} (x-z) & (x^2-z^2) & yz-xy \\ y-z & y^2-z^2 & zx-xy \\ z & z^2 & xy \end{vmatrix}$	
	z z xy	
	1 x+z -(y)	
	$= (x-z)(y-z) \begin{vmatrix} 1 & x+z & -(y) \\ 1 & y+z & -x \\ z & z^{2} & xy \end{vmatrix}$	
	$R_1 \rightarrow R_1 - R_2$	
	$= (x-z)(y-z) \begin{vmatrix} 0 & x-y & x-y \\ 1 & y+z & -x \end{vmatrix}$	
	$= (x-z)(y-z) \begin{vmatrix} 0 & x-y & x-y \\ 1 & y+z & -x \\ z & z^2 & xy \end{vmatrix}$	

	$= (x-z)(y-z)(x-y) \begin{vmatrix} 0 & 1 & 1 \\ 1 & y+z & -x \\ z & z^2 & xy \end{vmatrix}$ = $(x-z)(y-z)(x-y) [-1(xy+zx)+1(z^2-y^2-z^2)]$ = $(x-z)(y-z)(x-y) [-xy-zx-yz]$ = $(x-y)(y-z)(z-x)(xy+yz+zx)$	
3.	$A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ $AB = 8I \implies B^{-1} = \frac{1}{8}A$	5
	The given system of equation in matrix form is $BX = C$ where $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $C = \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$ $\Rightarrow B^{-1} = \frac{1}{8} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 24 \\ -16 \\ -8 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix} \Rightarrow x = 3; y = -2 \& z = -1$	
4.	Let the cost of the three articles be $\gtrless x, \gtrless y$ and $\gtrless z$ respectively. 5x+3y+z=160; 2x+y+3z=190 and x+2y+4z=250 In matrix form the equations can be represented as $\begin{bmatrix} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 160 \\ 190 \\ 250 \end{bmatrix} \Rightarrow x=10, y=20 \text{ and } z=50$	5
5.	Let $\frac{1}{x} = a$, $\frac{1}{y} = b$, $\frac{1}{z} = c$, then the given system of equation become 2a+3b+10c = 4 4a-6b+5c = 1 6a+9b-20c= 2 This system of equation can be written as $Ax = B$ Here, $A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix}$ $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$ Now, $ A = 2(120-45) - 3(-80-30) + 10(36+36)$ = 150+30+720 = 1200 $\Rightarrow A^{-1}$ exist. $adj(A) = \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$ $A^{-1} = 1/1200 \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$ Now, $X = A^{-1}B$ Putting the values , we get , $x = 2$, $y = 3$, $z = 5$	5

-		· ۱
6.	$ A = -6 \neq 0, \ A^{-1} = \frac{1}{ A } a dj A = \frac{1}{-6} \begin{bmatrix} -2 & -2 & 4 \\ -2 & 4 & 4 \\ 1 & -2 & -5 \end{bmatrix}$	5
	System of equation is as $AX = B$, where	
	$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 17 \\ 3 \\ 7 \end{bmatrix}$	
	$\begin{bmatrix} A - \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix}, A - \begin{bmatrix} y \\ z \end{bmatrix}, B - \begin{bmatrix} 5 \\ 7 \end{bmatrix}$	
	$X = A^{-1}B = \frac{1}{-6} \begin{bmatrix} -2 & -2 & 4 \\ -2 & 4 & 4 \\ 1 & -2 & -5 \end{bmatrix} \begin{bmatrix} 17 \\ 3 \\ 7 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$	
	$\therefore x = 2, y = -1, z = 4$ x+y+z = 12; 2x + 3y + 3z = 33; x - 2y + z = 0	5
7.	therefore the system of equation can be written as $AX = B$ where	5
	$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & -2 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 12 \\ 33 \\ 0 \end{bmatrix}$ $ A = 3, \therefore A^{-1} = \frac{1}{3} \begin{bmatrix} 9 & -3 & 0 \\ 1 & 0 & -1 \\ -7 & 3 & 1 \end{bmatrix}$ $X = A^{-1}B = \frac{1}{3} \begin{bmatrix} 9 & -3 & 0 \\ 1 & 0 & -1 \\ -7 & 3 & 1 \end{bmatrix} \begin{bmatrix} 12 \\ 33 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$	
	$A = \begin{bmatrix} 2 & 3 & 3 \\ 1 & -2 & 1 \end{bmatrix}, X = \begin{bmatrix} y \\ z \end{bmatrix}, B = \begin{bmatrix} 33 \\ 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 4 & -2 & -2 & -1 & -1 \end{bmatrix} \begin{bmatrix} 9 & -3 & 0 \\ 1 & 0 & -1 \end{bmatrix}$	
	$\begin{bmatrix} 1 & -3 & -3 \\ -7 & 3 & 1 \end{bmatrix}$	
	$\begin{bmatrix} X = A^{-1}B = \frac{1}{2} \begin{bmatrix} 9 & -3 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 12 \\ 33 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & -7 & 3 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix}$	
	$ \therefore x = 3, y = 4, z = 5 2x + 3y + 5z = 6 + 12 + 25 = 43 $	
8.	x+y+z=6000; $x+3z=11000$; $x-2y+z=0$	
	$\begin{vmatrix} AX = B \\ \Gamma I & I \\ I & I \\$	1⁄2
	$ \begin{bmatrix} I & I & I \\ I & 0 & 3 \\ I & -2 & I \end{bmatrix} ; B = \begin{bmatrix} 6000 \\ 11000 \\ 0 \end{bmatrix} ; X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} $	1 /
		$\frac{1/2}{1/2}$
	Det A=6 $\begin{bmatrix} 6 & -3 & 3 \end{bmatrix}$	72
	$Adj A = \begin{bmatrix} 6 & -3 & 3 \\ 2 & 0 & -2 \\ -2 & 3 & -1 \end{bmatrix}$	1
	$\begin{bmatrix} 1-2 & 3 & -1 \end{bmatrix}$	
	$A^{-1} = 1/6$, 2 0 -2	
	$\begin{bmatrix} -2 & 3 & -1 \end{bmatrix}$	1/2
	$X = A^{-1}B = \begin{bmatrix} 300\\2000 \end{bmatrix}$	
	$\begin{bmatrix} 3500 \end{bmatrix}$	
	So x=500,y=2000,z=3500	1/2+1
		1/2
9.	Let $x = \frac{l}{u}, y = \frac{l}{v}, z = \frac{l}{w}$	1/2
	We have $x+y+z=12$,	1/2
	3y+3z+2x=33,	
	x+z=2y	
	i.e. AX=B	
		1/2+1/2

	where $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & -2 & 1 \end{bmatrix} \& A = 3$ Now, $AdjA = \begin{bmatrix} 9 & -3 & 0 \\ 1 & 0 & -1 \\ -7 & 3 & 1 \end{bmatrix}$ So, $X = A^{-1}B = \frac{AdjA}{ A }B$ thus $\begin{bmatrix} 9 \\ 12 \end{bmatrix}$	1/2+1/2
	$X = \begin{bmatrix} 3 \\ 12 \\ 15 \end{bmatrix},$ $\therefore x = 3, y = 4, z = 5$	1
10.	According to the question, 2x + 3y + 4z = 29000 5x + 2y + 3z = 30500 x + y + z = 9500	5
	The above equations can be written as, AX = B Where $A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $B = \begin{bmatrix} 29000 \\ 30500 \\ 9500 \end{bmatrix}$	
	Therefore, $X = A^{-1}B$ Solving We get, x = 2750, y = 3500, z = 3250.	
11.	Let x pounds of food A, y pounds of food B and z pounds of food C be needed to form the mixture. According to the question, x + 3y + 4z = 8 2x + y + 2z = 5 5x + y + z = 7	5
	The above equations can be written as, AX = B Where $A = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 1 & 2 \\ 5 & 1 & 1 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $B = \begin{bmatrix} 8 \\ 5 \\ 7 \end{bmatrix}$	
	Now, $ A = 11 \neq 0$ So, $A^{-1} = \frac{1}{11} \begin{bmatrix} -1 & 1 & 2\\ 8 & -19 & 6\\ -3 & 14 & -5 \end{bmatrix}$,	
	Solving We get,	

$$\begin{aligned} x = 1, \quad y = 1, \quad z = 1. \\ \hline x = 1, \quad y = 1, \quad z = 1. \\ \hline 12. \quad |.A| = 2(4+4) - (-3)(-6+4) - 5(3-2) = 2.0 + 3(-2) + 5.1 = 0.6 + 5 = -1 \neq 0 \land A^{-1} \text{ exists.} & 1 \\ \hline \text{Then, adj } A = \begin{bmatrix} 0 & 2 & 1 & 1 \\ -1 & -9 & -5 & 1 \\ 2 & 23 & 13 \end{bmatrix}^{-1} \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ 1 & 5 & -13 \end{bmatrix} & 1 \\ \hline \text{The given system of equations can be written as a single matrix equation} \\ \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} y \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \\ -3 \end{bmatrix} & 1 \\ \hline \text{In } B = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} -3 \\ -5 & -4 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0.11 + 1 \\ -5 \\ -1 & 5 & -13 \end{bmatrix} = \begin{bmatrix} 0.11 + 1 \\ -5 \\ -11 + 5 \\ -5 \\ -11 - 25 + 39 \end{bmatrix} \\ \Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \\ -2 \\ -1 \end{bmatrix} & \therefore x = 1, \ y = 2, \ z = 3. \end{aligned}$$

As Per Revised CBSE Curriculum 2023-24

Classroom Teaching & Animated Videos Playlists

We take immense pleasure in serving you. Now, revel in our seamless online services completely free of charge. view our animated and classroom teaching Playlists customized for students from grade 1 to 12,Covering a wide range of subjects to enhance your comprehension and knowledge. Simply click on the provided playlist links to access **Playlists based on the latest NCERT Syllabus for 2023-24.**

content includes **Competency-Based** Our Questions, Assertion-Reason Questions, Previous Year Questions (PYQ), and Study-Based Questions to enhance your Case learning experience. For the most up-to-date videos, consider subscribing to our YouTube channel at https://www.youtube.com/@PrincipalsHandbookandDiaryadditionall y, you're encouraged to join our expanding WhatsApp community group to stay updated with the latest curriculum-related content and updates.

Nageen Group of Schools

We are committed to enriching your educational journey!!!

ANIMATED & CLASSROM TEACHING VIDEOS PLAYLISTS

(As per revised CBSE Curriculum- 2023-24)

ANIMATED VIDEOSPLAYLI	STS (CLASS 1)			
Class 1 EVS(EnglishLanguage)(CBSE)	Click here for playlist			
Class 1 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 1 EVS (HindiLanguage)(CBSE)	Click here for Playlist			
Class 1 Mathematics(Hindi Language)(CBSE)	<u>Click here for Playlist</u>			
ANIMATED VIDEOS PLAYL	ISTS (CLASS 2)			
Class 2 EVS (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 2 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 2 EVS(HindiLanguage)(CBSE)	Click here for Playlist			
Class 2 Mathematics (Hindi Language)(CBSE)	Click here for Playlist			
ANIMATED VIDEOS PLAYL	ISTS (CLASS 3)			
Class 3 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 3 EVS (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 3 EVS (HindiLanguage)(CBSE)	Click here for Playlist			
Class 3 Mathematics (HindiLanguage)(CBSE)	Click here for Playlist			
	· · · · · · · · · · · · · · · · · · ·			
ANIMATED VIDEOS PLAYL	ISTS (CLASS 4)			
Class 4 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 4 EVS(EnglishLanguage)(CBSE)	Click here for Playlist			
Class 4 Mathematics (HindiLanguage)(CBSE)	Click here for Playlist			
Class 4 EVS (HindiLanguage)(CBSE)	Click here for Playlist			
CLASSROOM TEACHING VIDEOS	PLAYLISTS (CLASS 4)			
Class 4 General Science (CBSE)	Click here for Playlist			
	· · · · · · · · · · · · · · · · · · ·			
ANIMATED VIDEOS PLAYL	ISTS (CLASS 5)			
Class 5 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 5 Science (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 5 Mathematics(HindiLanguage)(CBSE)	Click here for Playlis			
Class 5 Science (HindiLanguage)(CBSE)	Click here for Playlis			
	CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 5)			
	PLAYLISTS (CLASS 5)			
	PLAYLISTS (CLASS 5) Click here for Playlist			

ANIMATED VIDEOS PLAYLISTS	(CLASS 6)			
Class 6 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 6 Social Science (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 6 Science (EnglishLanguage) (CBSE)	Click here for Playlist			
Class 6 Mathematics (Hindi Language)(CBSE)	Click here for Playlist			
Class 6 Science All Chapters (CBSE)	Click here for Playlist			
CLASSROOM TEACHING VIDEOS PLAY				
Class 6 Mathematics (CBSE)	Click here for Playlist			
Class 6 Social Science (CBSE)	Click here for Playlist			
Class 6 Sanskrit (CBSE)	Click here for Playlist			
Class 6 Hindi (CBSE)	Click here for Playlist			
Class 6 Science (CBSE)	Click here for Playlist			
ANIMATED VIDEOS PLAYLISTS				
Class 7 Science(CBSE)	Click here for Playlist			
Class 7 Mathematics(CBSE)	Click here for Playlist			
Class 7 Social Science(CBSE)	Click here for Playlist			
Class 7 Mathematics(CBSE)	Click here for Playlist			
Class 7 Science (CBSE)	Click here for Playlist			
CLASSROOM TEACHING VIDEOS PLAN Class 7 Science (CBSE)	YLISTS (CLASS 7) Click here for Playlist			
Class 7 Hindi (CBSE)	Click here for Playlist			
Class 7 Sanskrit (CBSE)	Click here for Playlist			
Class 7 Social Science (CBSE)	Click here for Playlist			
Class 7 Mathematics (CBSE)	Click here for Playlist			
ANIMATED VIDEOS PLAYLISTS	(CLASS 8)			
Class 8 Science(CBSE)	Click here for Playlist			
Class 8 Mathematics(CBSE)	Click here for Playlist			
Class 8 Social Science(CBSE)	Click here for Playlist			
Class 8 Mathematics(CBSE)	Click here for Playlist			
Class 8 Science(CBSE)	Click here for Playlist			
CLASSROOM TEACHING VIDEOS PLAY				
Class 8 Hindi (CBSE)	Click here for Playlist			
Class 8 Sanskrit (CBSE)	Click here for Playlist			
ANIMATED VIDEOS PLAYLISTS				
Class 9 Biology(CBSE)	Click here for Playlist			
Class 9 Physics(CBSE)	Click here for Playlist			
Class 9 Chemistry(CBSE)	Click here for Playlist			
Class 9 Social Science (CBSE)	<u>Click here for Playlist</u>			

Class 9 Mathematics (CBSE)	Click here for Playlist
Class 9 Science (CBSE)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 9)			
Class 9 Social Science (CBSE)	Click here for Playlist		
Class 9 Mathematics(CBSE)	Click here for Playlist		
Class 9 English (CBSE)	Click here for Playlist		
Class 9 Hindi (CBSE)	Click here for Playlist		

	ANIMATED	VIDEOS	PLAYLISTS	CLASS 1	L O)
-					

Class 10 Biology (CBSE)	Click here for Playlist
Class 10 Physics (CBSE)	Click here for Playlist
Class 10 Chemistry (CBSE)	Click here for Playlist
Class 10 Social Science (CBSE)	Click here for Playlist
Class 10 Mathematics(CBSE) (English Language)	Click here for Playlist
Class 10 Mathematics(CBSE) (Hindi Language)	Click here for Playlist
Class 10 Science(CBSE) (Hindi Language)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 10)			
Class 10 English (CBSE)	Click here for Playlist		
Class 10 Hindi (CBSE)	Click here for Playlist		
Class 10 Mathematics (CBSE)	Click here for Playlist		
Class 10 Social Science (CBSE)	Click here for Playlist		
Class 10 Magical Science Board Exam Preparation in 1 min (CBSE)	Click here for Playlist		
Class 10: Science (CBSE)	Click here for Playlist		

ANIMATED VIDEOS PLAYLISTS (CLASS 11)		
Class 11 Physics (CBSE) (English Language)	Click here for Playlist	
Class 11 Chemistry (CBSE) (English Language)	Click here for Playlist	
Class 11 Biology (CBSE) (English Language)	Click here for Playlist	
Class 11 Mathematics(CBSE) (English Language)	Click here for Playlist	
Class 11 Accountancy (CBSE) (English Language)	Click here for Playlist	
Class 11 Business Studies (CBSE) (English Language)	Click here for Playlist	
Class 11 Statistics (CBSE) (English Language)	Click here for Playlist	
Class 11 Biology (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Mathematics (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Physics (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Chemistry (CBSE) (Hindi Language)	Click here for Playlist	
Class 11Micro Economy (CBSE) (English Language)	Click here for Playlist	

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 11)		
Class 11Mathematics (CBSE)	Click here for Playlist	
Class 11 Accounts (CBSE)	Click here for Playlist	
Class 11 Business Studies (CBSE)	Click here for Playlist	

Class 11 Hindi (CBSE)	Click here for Playlist
Class 11 Psychology (CBSE)	Click here for Playlist
Class 11 Economics (CBSE)	Click here for Playlist
Class 11 Physics (CBSE)	Click here for Playlist
Class 11 Chemistry (CBSE)	Click here for Playlist
Class 11 English (CBSE)	Click here for Playlist
Class 11 Biology (CBSE)	Click here for Playlist
Class 11 Biology Shorts (CBSE)	Click here for Playlist

ANIMATED VIDEOS PLAYLISTS (CLASS 12)

Class 12 Physics (CBSE)	<u>Click here for Playlist</u>
Class 12 Chemistry (CBSE)	Click here for Playlist
Class 12 Biology(CBSE)	Click here for Playlist
Class 12 Macro Economy (CBSE)	<u>Click here for Playlist</u>
Class 12Economic (CBSE)	Click here for Playlist
Class 12 Mathematics (CBSE)	<u>Click here for Playlist</u>
Class 12 Accountancy (CBSE)	Click here for Playlist
Class 12 Business Studies (CBSE)	<u>Click here for Playlist</u>
Class 12 Physics (CBSE)	<u>Click here for Playlist</u>
Class 12 Mathematics (CBSE)	Click here for Playlist
Class 12 Biology (CBSE)	Click here for Playlist
Class 12 Chemistry (CBSE)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 12)		
Class 12 CHEMISTRY (CBSE)	Click here for Playlist	
Class 12 Business Studies (CBSE)	Click here for Playlist	
Class 12 Hindi (CBSE)	Click here for Playlist	
NEET Biology in 1 min	Click here for Playlist	
Class 12 History (CBSE)	Click here for Playlist	
Class 12 Political Science (CBSE)	Click here for Playlist	
Class 12 Physics (CBSE)	Click here for Playlist	
Class 12 Biology (CBSE)	Click here for Playlist	
Class 12 : Accounts (CBSE)	Click here for Playlist	

SCHOOL OF EDUCATORS

You will get Pre- Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here .Join Your Subject WhatsApp Group.

Rules & Regulations of the Group

- 1. No introduction
- 2. No Good Morning/Any wish type message
- 3.No personal Chats & Messages
- 4. No Spam
- 5. You can also ask your difficulties here.

Just get learning resources & post learning resources. Helpline number only WhatsApp: +91-95208-77777

Julearn /

Why Artham Resource Material?

Resource materials for teachers and students are essential tools for effective teaching and learning. They provide valuable information, guidance, and support to both teachers and students, making the teaching and learning process more efficient and productive.

For teachers, Artham resource materials include lesson plans, instructional guides, assessment tools, professional development materials, and teaching aids. These materials are well researched and created according to 2023-24 NEP and NCERT guidelines.

For students, resource materials can include textbooks, study guides, homework assignments, reference books, online learning platforms, and educational videos. These materials can be obtained from school libraries, educational publishers, online resources, and teachers.

Both teachers and students can also benefit from Artham educational resources which are free and openly licensed educational materials that can be used and shared for teaching and learning. Artham resource material include textbooks, courses, lesson plans, and multimedia resources that are available online.

In summary, resource materials are critical components of effective teaching and learning. They provide a wealth of information and support that can enhance the quality of education and help students achieve academic success.

Teachers and students can also purchase these resources from the links provided with every resource.

JOIN TELEGRAM GROUP/CHANNELS FOR CLASS WISE HIGH QUALITY RESOURCE MATERIAL

SOE CBSE Groups

- <u>Click to Join CBSE Group...All classes</u>
- <u>Click to Join SOE CBSE Kindergarten Group</u>
- <u>Click to Join SOE CBSE Class 1 Group</u>
- <u>Click to Join SOE CBSE Class 2 Group</u>
- Click to Join SOE CBSE Class 3 Group
- Click to Join SOE CBSE Class 4 Group
- Click to Join SOE CBSE Class 5 Group
- Click to Join SOE CBSE Class 6 Group
- Click to Join SOE CBSE Class 7 Group
- Click to Join SOE CBSE Class 8 Group
- Click to Join SOE CBSE Class 9 Group
- <u>Click to Join SOE CBSE Class 10 Group</u>
- <u>Click to Join SOE CBSE Class 11 (Science) Group</u>
- <u>Click to Join SOE CBSE Class 11 (Commerce) Group</u>
- <u>Click to Join SOE CBSE Class 11 (Humanities) Group</u>
- <u>Click to Join SOE CBSE Class 12 (Science) Group</u>
- <u>Click to Join SOE CBSE Class 12(Commerce) Group</u>

- <u>Click to Join SOE CBSE Class 12 (Humanities) Group</u>
- <u>Click to Join SOE JEE/NEET Group</u>
- <u>Click to Join SOE CUET Group</u>
- <u>Click to Join SOE NDA, OLYMPIAD, NTSE Group</u>
- <u>Click to Join SOE School Principal Professional Development Group</u>
- <u>Click to Join SOE School Teacher Professional Development Group</u>
- <u>Click to Join SOE CBSE Project File Group for Class 9th to 12th All Subjects</u>

SOE ICSE Groups

- <u>Click to Join SOE ICSE Kindergarten Group</u>
- <u>Click to Join SOE ICSE Class 1 Group</u>
- <u>Click to Join SOE ICSE Class 2 Group</u>
- <u>Click to Join SOE ICSE Class 3 Group</u>
- <u>Click to Join SOE ICSE Class 4 Group</u>
- <u>Click to Join SOE ICSE Class 5 Group</u>
- Click to Join SOE ICSE Class 6 Group
- Click to Join SOE ICSE Class 7 Group
- <u>Click to Join SOE ICSE Class 8 Group</u>
- <u>Click to Join SOE ICSE Class 9 Group</u>
- Click to Join SOE ICSE Class 10 Group
- <u>Click to Join SOE ICSE Class 11 (Science) Group</u>
- <u>Click to Join SOE ICSE Class 11 (Commerce) Group</u>
- <u>Click to Join SOE ICSE Class 11 (Humanities) Group</u>
- <u>Click to Join SOE ICSE Class 12 (Science) Group</u>
- <u>Click to Join SOE ICSE Class 12(Commerce) Group</u>
- <u>Click to Join SOE ICSE Class 12 (Humanities) Group</u>
- <u>Click to Join SOE JEE/NEET Group</u>
- <u>Click to Join SOE CUET Group</u>
- <u>Click to Join SOE NDA, OLYMPIAD, NTSE Group</u>
- <u>Click to Join SOE School Principal Professional Development Group</u>
- <u>Click to Join SOE School Teacher Professional Development Group</u>

Nageen CBSE Channels

- <u>Click to Join Nageen CBSE Kindergarten Channel</u>
- <u>Click to Join Nageen CBSE Class 1 Channel</u>
- <u>Click to Join Nageen CBSE Class 2 Channel</u>
- <u>Click to Join Nageen CBSE Class 3 Channel</u>
- <u>Click to Join Nageen CBSE Class 4 Channel</u>
- Click to Join Nageen CBSE Class 5 Channel
- <u>Click to Join Nageen CBSE Class 6 Channel</u>
- Click to Join Nageen CBSE Class 7 Channel
- Click to Join Nageen CBSE Class 8 Channel
- Click to Join Nageen CBSE Class 9 Channel
- Click to Join Nageen CBSE Class 10 Channel
- Click to Join Nageen CBSE Class 11 (Science) Channel
- Click to Join Nageen CBSE Class 11 (Humanities) Channel
- Click to Join Nageen CBSE Class 11 (Commerce) Channel
- Click to Join Nageen CBSE Class 12 (Science) Channel
- <u>Click to Join Nageen CBSE Class 12 (Commerce) Channel</u>
- <u>Click to Join Nageen CBSE Class 12 (Humanities) Channel</u>

- Click to Join JEE/NEET Channel
- <u>Click to Join CUET Channel</u>
- <u>Click to Join NDA, OLYMPIAD, NTSE Channel</u>

Nageen ICSE Channels

- <u>Click to Join Nageen ICSE Kindergarten Channel</u>
- <u>Click to Join Nageen ICSE Class 1 Channel</u>
- <u>Click to Join Nageen ICSE Class 2 Channel</u>
- <u>Click to Join Nageen ICSE Class 3 Channel</u>
- <u>Click to Join Nageen ICSE Class 4 Channel</u>
- <u>Click to Join Nageen ICSE Class 5 Channel</u>
- <u>Click to Join Nageen ICSE Class 6 Channel</u>
- <u>Click to Join Nageen ICSE Class 7 Channel</u>
- <u>Click to Join Nageen ICSE Class 8 Channel</u>
- <u>Click to Join Nageen ICSE Class 9 Channel</u>
- <u>Click to Join Nageen ICSE Class 10 Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Science) Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Commerce) Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Humanities) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Science) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Commerce) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Humanities) Channel</u>
- <u>Click to Join JEE/NEET Channel</u>
- <u>Click to Join CUET Channel</u>
- <u>Click to Join NDA, OLYMPIAD, NTSE Channel</u>