

27 | P a g e

DataFrame

A pandas DataFrame is a two (or more) dimensional data structure – basically

a table with rows and columns. The columns have names and the rows have

indexes. For instance, the price can be the name of a column and 2,3 the price

values.

A picture of a Pandas DataFrame is shown alongside:

In general, you could say that the Pandas DataFrame consists of

three main components: the data, the index, and the columns.

A pandas DataFrame can be created using the following constructor pandas.

DataFrame (data, index, columns, dtype, copy).

The parameters of the constructor are as follows:

Create a DataFrame from Dictionary

When DataFrame is created by using Dictionary, keys of dictionary are set as

columns of DataFrame. You can change the order of columns and store

specified columns. If you try to change the column name, NaN will be

displayed.

Note: Column name values must be same as dictionary keys

Q. Write python code to create a Dictionary Dic to store roll, name and marks

of 3 students. Convert Dic into DataFrame df and display the DataFrame

df.

Ans.

import pandas as pd

Dic={‘roll’:(1,2,3),’name’:(‘a’,’b’,’c’),’marks’:(24,53,66)}

df=pd.DataFrame(Dic)

print (df)

Output:

roll name marks

0 1 a 24

1 2 b 53

2 3 c 66

28 | P a g e

Q. Write python code to create the DataFrame emp using dictionary:

 Name Salary

101 Rohan 20000

102 Aman 25000

Ans.

import pandas as pd

emp=

pd.DataFrame({‘Name’:[‘Rohan’,’Aman’],’Salary’:[20000,25000]},

index=[101,102]);

print(emp)

or

import pandas as pd

Dic= {‘Name’:[‘Rohan’,’Aman’],’Salary’:[20000,25000]}

emp = pd.DataFrame(Dic,index=[101,102]);

print(emp)

➢ Iterating in Pandas DataFrame

Iteration is a general term for taking each item of something one after

another. In Pandas DataFrame, we can iterate an element in two ways:

(i) Iterating over rows:

There are three functions to iterate over rows as follows:

• iterrows() : It returns the iterator yielding each index value

along with a series containing the data in each row.

• iteritems() : It iterates over each column as key, value pair

with label as key and column value as series object.

• itertuples(): In DataFrame, it returns a tuple for each row.

The first element of the tuple will be the row’s

corresponding index value, while the remaining value are

the rows values.

29 | P a g e

(ii) Iterating over columns

In order to iterate over columns, we need to create a list of

DataFrame columns and then iterating through that list to pull out
the DataFrame columns.

➢ Operations on rows and columns

 As we know, DataFrame is a two-dimensional data structure means data is

arranged in a tabular format like rows and columns, some basic operations
can be performed like adding, deleting, selecting and renaming. These
operations are as follows:

(i) Addition

• To add a column in Pandas DataFrame, a new list as a

column can be declared and add to an existing DataFrame.

• To add a row in Pandas DataFrame, we can concat the old

DataFrame with new one.

(ii) Selection

• To select a column in Pandas DataFrame, we can either

access the columns by calling them by their column names.

• To retrieve rows from a DataFrame, a special method is used

named DataFrame.loc[]. Rows can also be selected by

passing integer location to iloc[] method.

(iii) Deletion

• To delete a column from Pandas DataFrame, drop() method

is used. Columns are deleted by dropping columns with

column names.

• To delete a row from Pandas DataFrame, drop() method is

used. Rows are deleted by dropping rows by index label.

➢ Head and Tail functions

head() and tail() methods or functions are used to view a small sample of
a DataFrame object. These functions are described below

(i) head():
 This function returns the first n rows for the object based on position.

It is useful for quick testing if your object has the right type of data
in it.

Syntax DataFrame.head (n=5)

Parameters: n-is an integer value, number of rows to be returned where

 default value is 5.
Return DataFrame with top n rows

30 | P a g e

Q. Give the output:
import pandas as pd
Dic={‘empno’:(101,102,103,104,105,106),’grade’:(‘a’,’b’,’a’,’c’,’b’,’c’) ,

’dept’: (‘sales’,’pur’,’mar’,’sales’,’pur’,’mar’)}
df=pd.DataFrame(Dic)
print(df.head(3))

Output:
empno grade dept
0 101 a sales
1 102 b pur
2 103 a mar

Q. Give the output

Ans.

import pandas as pd

Dic={‘empno’:(101,102,103,104,105,106),’grade’:(‘a’,’b’,’a’,’c’,’b’,’c’),’

dept’: (‘sales’,’pur’,’mar’,’sales’,’pur’,’mar’)}

df=pd.DataFrame(Dic)

print(df.head()[[‘empno’,’dept’]])

Output:

empno dept

0 101 sales

1 102 pur

2 103 mar

3 104 sales

4 105 pur

(ii) tail():
This function returns last n rows from the object based on position. It is

useful for quickly verifying data. e.g. after sorting

Syntax: DataFrame.tail (n=5)

Q. Give the output

import pandas as pd

Dic={‘empno’:(101,102,103,104,105,106),’grade’:(‘a’,’b’,’a’,’c’,’b’,’c’),’

dept’: (‘sales’,’pur’,’mar’,’sales’,’pur’,’mar’)}

31 | P a g e

df=pd.DataFrame(Dic)

print(df.tail())

Ans.

empno grade dept

1 102 b pur

2 103 a mar

3 104 c sales

4 105 b pur

5 106 c mar

➢ Indexing using Labels

 Indexing in Pandas means simply selecting particular rows and columns of

a DataFrame. Indexing can also be known as subset selection.

It is common operation to pick out one of the DataFrame’s columns to work

on.

To select a column by its label, we use the .loc[] function.

Pandas DataFrame.loc attribute access a group of rows and columns by

label(s) or a boolean array in the given DataFrame.

Syntax: DataFrame.loc

loc takes two single/list/range operators separated by ','.

The first one indicates the row and the second one indicates columns.

➢ Boolean Indexing:

 It helps us to select the data from the DataFrames using a boolean vector.

We need a DataFrame with a boolean index to use the boolean indexing.

In boolean indexing, we can filter a data in four ways:

• Accessing a DataFrame with a boolean index

• Applying a boolean mask to a DataFrame

• Masking data based on column value

• Masking data based on index value

