

Chapter 3 : Gravitation

Section A

1. The universal gravitational constant G has the unit

a) N	b)	N m ² / kg ²	<i>c)</i>	m/s ²	d)	J
------	----	------------------------------------	-----------	------------------	----	---

- 2. The earth attracts a body of mass 1 kg kept on its surface with a force of
 - a) 1 N b) 6.67×10^{-11} N c) 9.8 N d) 1/9.8 N
- 3. The value of g.
 - *a*) is constant everywhere in space
 - *b)* is constant on the surface of the earth
 - *c*) is greater at the poles than at the equator
 - *d*) is greater at the equator than at the poles.
- 4. The force acting on a ball due to the earth has a magnitude F_b and that acting on the earth due to the ball has a magnitude F_e . Thus
 - a) $F_b > F_e$ b) $F_b = F_e$ c) $F_e = 0$ d) $F_b < F_e$
- 5. If the distance between two objects is tripled, the force of attraction between them will become

a) 4 times *b)* ¹/₄ time *c)* 2 times *d)* remains the same
6. The force of gravitation between two bodies does not depend on

- *a*) their separation *b*) the product of their masses
- *c)* sum of their masses *d)* gravitational constant
- 7. When an object is thrown up, the force of gravity is
 - *a*) in the downward direction
 - *b*) in the upward direction
 - c) zero
 - *d*) in the horizontal direction
- 8. The force acting on a ball due to the earth has a magnitude F_b and that acting on the earth due to ball has a magnitude Fe. The

a) $F_b > F_e$ b) $F_b = F_e$ c) $F_e = 0$ d) $F_b < F_e$

- 9. The acceleration due to gravity near the moon's surface is
 - a) approximately equal to that near earth's surface
 - b) approximately six times that near earth's surface
 - c) approximately one-sixth of that near earth's surface
 - *d*) slightly greater than that near earth's surface.

10. If a planet existed where mass and radius were both half those of the earth, the acceleration due to gravity at its surface would be

a) 19.6 m/s² b) 9.8 m/s² c) 4.9 m/s² d) 2.45 m/s²

- 11. The weight of a body of mass 2 kg is
 - a) 15 N b) 19.6 N c) 49 N d) 5.5 N
- 12. The weight of a body is measured to be 120N on the earth. If it is taken to the moon, its weight will be about
 - a) 120 N b) 60N c) 20N d) 720N

Section B

- 1. State whether the following statements are true or false
 - *a*) The value of g at the centre of earth is zero
 - *b*) G and g are two ways of writing the same quantity.
 - *c*) Due to gravitational force, all bodies in the universe attract each other
 - *e)* The earth revolves around the sun due to the gravitational attraction of the sun.
 - *f)* The value of acceleration due to gravity does not depend on the mass of the body.
- 2. Distinguish between G and g
- 3. Fill in the blanks:
 - *a*) The force of gravitation exerted on one body by the other is F. If the mass of each body is doubled the force will become_____
 - b) The force of gravitation between two spherical bodies is $Gm_1 m_2 / r^2$, where r is separation between their _____
 - *c)* If the distance between two objects is doubled, the force of gravitation between them becomes______of initial value.
- 4. Distinguish between mass and weight.
- 5. If the moon attracts the Earth, why does the Earth not move towards the Moon?
- 6. Explain why a 10 kg stone and 1 kg stone dropped from the same height reach the ground at same time?
- 7. What happens to the weight of a person when he is
 - *a*) at the top of a high mountain?
 - *b)* deep inside the earth?
 - *c)* at the center of the earth?

<u>Section C</u>

1. Calculate the gravitational force between a 10 kg ball and 20 kg ball placed at a

separation of 5 m.

2. Calculate the value of g on the surface of moon

(Mass of moon = 7.4×10^{22} kg, Radius of moon = 1740 km)

- 3. Calculate value of acceleration due to gravity at a place 3200 km above the surface of the earth.
- 4. A body weighs 120 N on the earth. Find its weight on the moon.

=====	======	=======	======	=====	======	=======	===					
<u>Section A</u>												

- 1. Pascal is a unit of
 - a) pressure b) force c) linear momentum d) energy
- 2. The buoyant force on a body acts in a
 - *a*) vertically downward direction
 - *b*) vertically upward direction
 - *c)* horizontal direction
 - *d*) direction between the horizontal and the vertical
- 3. The force acting normally on a surface is called
 - a) pressure b) Thrust c) Force d) Balanced
- 4. Mark the statements true (T) or false (F)
 - *a)* The pressure at all points in a liquid at the same horizontal plane is equal.
 - *b*) Pascal and N/m² represent the same unit.
 - *c)* Pressure has magnitude as will as direction.
- 5. 1 bar = ____Pa
 - a) 10⁵ b) 10⁻⁵ c) 10³ d) 10⁻³

Section B

- 1. Define pressure at a point.
- 2. State Archimedes principle.
- 3. Why is it easier to swim in sea water than in fresh water?
- 4. Does a liquid press an immersed body from all sides?

Section C

- 1. A body of volume 50 cm³ is completely immersed in water. Find the force of buoyancy on it.
- 2. A block weighing 1 kg is in the shape of a cube of length 10 cm. It is kept on a

horizontal table. Find the pressure on the portion of the table where the block is kept.

- 3. A bottle weighs 30 g when empty, 53.4 g when filled with a liquid and 48 g when filled with water. Calculate the density of the liquid. Given, density of water at 4° C = 1000 kg/m³.
- 4. A metallic sphere of radius 2.0 cm is completely dipped in water. Find the force of buoyancy on it.
- 5. A cubical block of copper is dipped completely in water. Each edge of the block is 1cm in length. Find the buoyant force acting on the cube.