

CHAPTER1- RELATIONS & FUNCTIONS

CLASS12

- 1) Let R be a relation on the set L of lines defined by $l_1 R l_2$ if l_1 is perpendicular to l_2 , then relation R is
 - (a) reflexive and symmetric
 - (b) symmetric and transitive
 - (c) equivalence relation
 - (d) symmetric
- 2) 2. Given triangles with sides $T_1 : 3, 4, 5; T_2 : 5, 12, 13; T_3 : 6, 8, 10; T_4 : 4, 7, 9$ and a relation R in set of triangles defined as $R = \{(\Delta_1, \Delta_2) : \Delta_1 \text{ is similar to } \Delta_2\}$. Which triangles belong to the same equivalence class?
 - (a) T_1 and T_2
 - (b) T_2 and T_3
 - (c) T_1 and T_3
 - (d) T_1 and T_4
- 3) 3. Given set A = $\{1, 2, 3\}$ and a relation R = $\{(1, 2), (2, 1)\}$, the relation R will be
 - (a) reflexive if (1, 1) is added
 - (b) symmetric if (2, 3) is added
 - (c) transitive if (1, 1) is added
 - (d) symmetric if (3, 2) is added
- 4) 4. Given set $A = \{a, b, c\}$. An identity relation in set A is
 - (a) $R = \{(a, b), (a, c)\}$
 - (b) R = {(a, a), (b, b), (c, c)}
 - (c) $R = \{(a, a), (b, b), (c, c), (a, c)\}$
 - (d) $R = \{(c, a), (b, a), (a, a)\}$
- 5) . A relation S in the set of real numbers is defined as $xSy \Rightarrow x y + \sqrt{3}$ is an irrational number, then relation S is
 - (a) reflexive
 - (b) reflexive and symmetric
 - (c) transitive
 - (d) symmetric and transitive
- 6) 6. Set A has 3 elements and the set B has 4 elements. Then the number of injective functions that can be defined from set A to set B is(a) 144

- (b) 12
- (c) 24
- (d) 64
- 7) Let Z be the set of integers and R be a relation defined in Z such that aRb if (a b) is divisible by 5. Then R partitions the set Z into _____ pairwise disjoint subsets.
- 8) Consider set $A = \{1, 2, 3\}$ and the relation $R = \{(1, 2)\}$, then? is a transitive relation. State true or false.
- 9) Every relation which is symmetric and transitive is reflexive also. State true or false.
- 10) Let R be a relation defined as $R = \{(x, x), (y, y), (z, z), (x, z)\}$ in set $A = \{x, y, z\}$ then R is (reflexive/symmetric) relation.
- 11) Let R be a relation in the set of natural numbers N defined by R = {(a, b) ∈ N × N: a < b}. Is relation R reflexive? Give a reason.
- 12) Let A be any non-empty set and P(A) be the power set of A. A relation R defined on P(A) by X R Y ⇔ X ∩ Y = X, X, Y ∈ P(A). Examine whether ? is symmetric.
- 13) State the reason for the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} not to be transitive.
- 14) State the reason for the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} not to be transitive.
- 15) Show that the relation R in the set $\{1,2,3\}$ given by R = $\{(1,1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ is reflexive but neither symmetric nor transitive.
- 16) Let $A = \{3, 4, 5\}$ and relation R on set A is defined as $R = \{(a, b) \in A \times A : a b 10\}$. Is relation an empty relation?
- 17) Given set A = {a, b} and relation R on A is defined as R = {(a, a), (b, b)}. Is relation an identity relation?
- 18) 19. Let set A represents the set of all the girls of a particular class.
 Relation R on A is defined as R = {(a, b) ∈ A × A : difference between weights of a and b is less than 30 kg}. Show that relation R is a universal relation.
- 19) If $A = \{1, 2, 3\}$ and relation $R = \{(2, 3)\}$ in A. Check whether relation R is reflexive, symmetric and transitive.
- 20) State the reason for the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ not to be transitive.
- 21) Consider the set A containing n elements, then the total number of injective functions from set A onto itself is _____.
- 22) The domain of the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sqrt{4 x^2}$ is _____
- 23) Let A = {a, b }. Then number of one-one functions from A to A possible are

- (a) 2
- (b) 4
- (c) 1
- (d) 3
- 24) Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. Then number of one-one functions from A to B are _____.
- 25) If n(A) = p, then number of bijective functions from set A to A are
- 26) The function $f: \mathbb{R} \to \mathbb{R}$ defined as f(x) = [x], where [x] is greatest integer $\leq x$, is onto function. State true or false.
- 27) Let $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. State whether *f* is one-one or not
- 28) Let $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = |x|. Is function f onto? Give a reason.
- 29) Prove that $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3 + 1$ is one-one function.
- 30) Show that the Signum Function $f : \mathbb{R} \to \mathbb{R}$,

given by
$$f(x) = \begin{cases} 1, \text{ if } x > 0\\ 0, \text{ if } x = 0 \text{ is neither}\\ -1, \text{ if } x < 0 \end{cases}$$

one-one nor onto.

31) Given $f(x) = \sin x$ check if function f is one-one for (i) (0, π) (ii) (- $\pi/2$, $\pi/2$).

ANSWERS

https://www.ncertbooks.guru/maths-mcqs-for-class-12-with-answers-chapter-1/

4 MARK QUESTIONS

- 1) Consider f: $\mathbf{R} \to \mathbf{R}$ given by $f(x)=9x^2+6x-5$. Show that f is one to one but not onto.
- 2) Let f: $\mathbf{N} \rightarrow \mathbf{R}$ be a function defined as $f(x) = 4x^2 + 12x + 15$. show that f is one to one but not onto.
- 3) Let A = {1,2,3, ...,10} and R be the relation in A x A defined by (a, b) R (c, d) iff a + d = b + c for (a, b), (c, d) in A x A. Prove that R is an equivalence relation. Also obtain the equivalence class [(3,4)].
- 4)

Let $A = \{1,2,3, ...,9\}$ and R be the relation in A $\underset{x}{x}$ A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A x A. Prove that R is an equivalence relation. Also obtain the equivalence class [(2, 5)].

Let N denote the set of all natural numbers and R be the relation on N \underline{x} N defined by (a, b) R (c, d) iff

ad (b + c) = bc (a + d). Show that R is an equivalence relation.

- 6) Show that the relation R in the set N of Natural numbers given by $R = \{(a, b): 3 \text{ divides } |a b|\}$ is not an equivalence relation.
- 7) Check whether the relation R in **R** defined by $R = \{(a, b): a \le b^3\}$ is reflexive, symmetric, transitive.
- Prove the relation R on the set N x N defined by (a,b) R (c,d) ⇔ ad=bc for all

(a,b), $(c,d) \in N \times N$ is an equivalence relation.