	Central Kerala Sahodaya
	Class VII Session 2022 23
	Mathematics (Code-041)
	Time Allowed: 3 Hours Maximum Marks: 80
	General Instructions :
	1. This Question paper contains - five sections A, B, C, D and E. Each section
	is compulsory. However, there are internal choices in some questions.
	2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1
	mark each.
	3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
	4. Section U has 0 Short Answer (SA)-type questions of 5 marks each.
	5. Section D has 4 Long Answer (LA)-type questions of 5 marks each. 6. Section F has 3 source based/case based/passage based/integrated units of
	assessment (4 marks each) with sub parts.
	SECTION A
1.	The order of the single matrix obtained from
	$[5 \ 4 \ 3] \begin{bmatrix} 1 \ 4 \end{bmatrix} [1 \ -3 \ 4]$
	$\begin{bmatrix} 3 & 4 & 3 \\ -1 & 2 & 7 \end{bmatrix} \begin{bmatrix} -2 & 3 \\ 9 & 2 & 5 \end{bmatrix}$
	$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $
2.	If a matrix A is both symmetric and skew-symmetric, then $(a) = b + b$
	(a) A is a diagonal matrix (b) A is zero matrix
	(c) A is a scalar matrix (d) A is square matrix
3.	In triangle ABC, which of the following is not true?
	(a) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$ (b) $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = \overrightarrow{0}$
	(c) $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{CA} = \overrightarrow{0}$ (d) $\overrightarrow{AB} - \overrightarrow{CB} + \overrightarrow{CA} = \overrightarrow{0}$
4.	Find k, if
	(2x + 1, x < 2)
	$\mathbf{f}(\mathbf{x}) = \begin{cases} 1 & x = 2 \\ k, x = 2 \end{cases}$ is continuous at $at x = 2$
	(3x-1, x > 2)
	a) 0 b) 2 c) 5 d) 3
5.	f(x) = x - 1 + x - 2 is not differentiable
6	a) at $x = 1$ b) $x \in [1,2]$ c) $x \in \{1,2\}$ d) None
6.	If $y = x + e^x$, then $\frac{a^2 x}{dy^2} =$
	(a) $\frac{1}{1}$ (b) $\frac{-e^x}{1}$ (c) $\frac{-e^x}{1}$ (d) e^x
	$(1+e^{x})^{2}$ $(1+e^{x})^{2}$ $(1+e^{x})^{3}$ $(1+e^{x})^{3}$
7	If m and n respectively, are the order and the degree of the differential equation
/.	If in and it, respectively, are the order and the degree of the differential equation $d \left[(dx) \right]^4$
	$\frac{d}{dx}\left[\left(\frac{dy}{dx}\right)\right] = 0,$ then m + n =
	(a) 1 (b) 2 (c) 3 (d) 4
8.	The solution set of the inequality $3x + 5y > 4$ is

	$P(A \cup B) = \frac{3}{5}$. Find p if they are independent
	a) $\frac{1}{10}$ b) $\frac{1}{5}$ c) 1 d) $\frac{2}{5}$
17.	P is a point on the line joining the points $A(0,5, -2)$ and $B(3, -1,2)$. If the x-
	coordinate of P is 6, then its z-coordinate is (a) 10 (b) 6 (c) -6 (d) -10
18.	If $y = \sin^{-1} x$, then $(1-x^2)y_2 =$
	$a = \frac{1}{2}$
	a) xy_2 b) xy_1 c) xy d) x^2
	ASSERTION-REASON BASED QUESTIONS (19 & 20)
	In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices
	(a) Both A and R are true and R is the correct explanation of A.
	(b) Both A and R are true but R is not the correct explanation of A.
	(c) A is true but R is false. (d) A is false but R is true
19.	Assertion: The function $f(x) = \sin x$ does not possess inverse if $x \in \mathbb{R}$.
	Reason : The function $f(x) = \sin x$ is not one-one & onto if $x \in R$.
20	$A = A + DC + \overline{C} + \overline{C} + \overline{C}$
20.	Assertion : In $\triangle ABC$, $AB + BC + CA = 0$. Parson : If $\overrightarrow{OA} = \overrightarrow{a} + \overrightarrow{OB} = \overrightarrow{b}$, then $\overrightarrow{AB} = \overrightarrow{a} + \overrightarrow{b}$ (triangle law of addition)
	SECTION B
21.	Evaluate: $sin\left(\frac{1}{2}\cos^{-1}\frac{4}{7}\right)$
	(2 5)
	OR
	$f: \mathbf{N} \to \mathbf{N}$ be defined by (x + 1. if x is odd
	$f(x) = \begin{cases} x - 1, & \text{if } x \text{ is even} \end{cases}$ for all $x \in N$, show that f is bijective
22	
22.	The total cost $c(x)$ associated with the production of x units of an item is given by
	$C(x) = 0.007x^3 - 0.003x^2 + 15x + 4000$ Find the marginal cost when 17 units are
	$C(x) = 0.007x^{-0.003x^{-13x^{+13x^{+4000.1}}}$ and the marginal cost when 17 units are produced.
22	
23.	Find a vector perpendicular to $\vec{a} + b$ and $\vec{a} - b$
	where $\hat{a} = 3\hat{i} + 2\hat{j} + 2k$ and $\hat{b} = \hat{i} + 2\hat{j} - 2k$.
	OK Find the values of n so that the line
	$\frac{1-x}{x} = \frac{7y-14}{x} = \frac{z-3}{x}$ and $\frac{7-7x}{x} = \frac{y-5}{x} = \frac{6-z}{x}$ are right angles
	$3 \qquad 2p \qquad 2 \qquad 3p \qquad 1 \qquad 5 \qquad are right ungles$
24.	Find $\frac{dy}{dx}$ if, $y = x^{sinx}$
25.	$\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \vec{p} which is \perp
	to \vec{a} and \vec{b} and \vec{p} . $\vec{c} = 18$

	SECTION C	
26.	Evaluate: $\int \frac{1}{\sqrt{2+2x+x^2}} dx$	
27.	Evaluate: $\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{3-x}} dx$	
	OR Evaluate: $\int_{-1}^{1} 2x - 1 dx$	
28.	Find the differential equation $\frac{dy}{dx} = (1 + x^2)(1 + y^2)$	
	Find the differential equation $x \frac{dy}{dx} + 2y = x^2 \ (x \neq 0)$	
29.	Solve the following Linear Programming Problem graphically: Maximize $Z = 400x + 300y$ subject to $x + y \le 200$ $x \le 40, x \ge 20, y \ge 0$	
30.	Evaluate: $\int \frac{5x-2}{3x^2+2x+1} \mathrm{d}x$	
31.	From a lot of 30 bulbs which includes 6 defective, a sample of 4 bulbs is drawn at a random with replacement . Find the mean of the number of the defective bulbs. OR The probability of A, B and C solving a problem are 1/3,2/7, and 3/8 respectively. If all the three try to solve the problem simultaneously, find the probability that exactly one of them can solve it.	
32.	SECTION D Show that the relation R in the set N of Natural numbers given by $R = \{(a, b): a - b \text{ is a multiple of } 4\}$ is an equivalence relation.	
33.	Make a rough sketch of the region $\{(x, y): 0 \le y \le x^2, 0 \le y \le x, 0 \le x \le 2\}$ and find the area of the region using integration. OR Using integration find the area of region bounded by the triangle whose vertices are $(1,0), (2,2)$ and $(3,1)$.	
34.	$\begin{bmatrix} 4 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & -2 \end{bmatrix}$ find A ⁻¹ and hence solve: $4x + 2y + 3z = 2$, $x + y + z = 1$, 3x + y - 2z = 5	
35.	Suppose we have 2 particles moving in space. Particle A's position after t seconds is given by: $x(t) = 5-2t$, $y(t) = 4-3t$, z(t) = 4+4t	

i.The perimeter of rectangle P is:
a)a)
aa)
aa)
ab)a)
$$4x + 4\sqrt{a^2 - x^2}$$

b) $2x + 2\sqrt{4a^2 - x^2}$
c)
d) $2x + 2\sqrt{4a^2 - x^2}$
c)
d) $x + 4\sqrt{a^2 - x^2}$
c)
d)
d)
d) $x + 4\sqrt{a^2 - x^2}$
c)
d)
d) $x + 4\sqrt{a^2 - x^2}$
c)
d)
d)
d)
d)
d) $x + 4\sqrt{a^2 - x^2}$
c)
d)
d)

