

DATE: 27/09/2024	FIRST TERMINAL EXAMINATION (2024 - 25)	TIME: 3 Hrs	
GRADE: X	MARKING SCHEME MATHEMATICS (041)	MAX MARKS: 80	

GENERAL INSTRUCTIONS:

- 1. THIS QUESTION PAPER HAS 5 SECTIONS A, B, C, D, E
- 2. SECTION A HAS 20 MCQS CARRYING 1 MARK EACH
- 3. SECTION B HAS 5 QUSTIONS CARRYING 2 MARKS EACH
- 4. SECTION C HAS 6 QUESTIONS CARRYING 3 MARKS EACH
- 5. SECTION D HAS 4 QUESTIONS CARRYING 5 MARKS EACH
- 6. SECTION E HAS 3 CASE BASED INTERGRATED UNITS OF ASSESSMENT (4 MARKS EACH) WITH SUBPARTS OF THE VALUES OF 1, 1 AND 2 MARKS EACH RESPECTIVELY.
- 7. ALL QUESTIONS ARE COMPULSORY. HOWEVER, AN INTERNAL CHOICE IN 2 QUESTIONS OF 5 MARKS, 2 QUESTIONS OF 3 MARKS AND 2 QUESTIONS OF 2 MARKS HAS BEEN PROVIDED. AN INTERNAL CHOICE HAS BEEN PROVIDED IN THE 2 MARKS QUESTIONS OF SECTION E

SL. NO.	SECTION A	MARKS
	SECTION A CONSISTS OF 20 QUESTIONS OF 1 MARK EACH	
1.	a. 2	1
2.	d 4	1
3.	b. ab = 6	1
4.	d. 15	1
5.	c. 7	1
6.	a. (2,0)	1
7.	C. $\frac{1}{2}$	1
8.	C. $\frac{\sqrt{b^2-a^2}}{b}$	1
9.	c. 9	1
10.	b. 0.21	1
11.	a. $\frac{1}{3}$	1

a. is k = 3	1
d. 0	1
a. 1:2	1
a. 2 distinct real roots	1
d. c and a have same signs	1
d. 180a³b⁴	1
d. 150	1
d. A is false but R is true	1
b. Both A and R are true and R is not the correct explanation of A	1
SECTION B SECTION B CONSISTS OF 5 OUESTIONS OF 2 MARKS EACH	
If a and β are the zeroes of the polynomial $4x^2 - x - 4$, find the quadratic polynomial whose zeroes are $\frac{1}{2\alpha}$ and $\frac{1}{2\beta}$ $p(x) = 4x^2 - x - 4$ a = 4, $b = -1$, $c = -4a and \beta are zeros of p(x)we know that ,sum of zeros = -b/athat is ,a + \beta = -b/a = 1/4product of zeros = c/athat is ,a\beta = -4/4 = -1====================================$	2
$= 1/4\alpha\beta$ = $1/4 \times -1$	
	a. is k = 3 d. 0 a. 1:2 a. 2 distinct real roots d. c and a have same signs d. 180a ³ b ⁴ d. 150 d. A is false but R is true b. Both A and R are true and R is not the correct explanation of A SECTION B SECTION B

	= -1/4	
	a quadratic polynomial is given by ,	
	k { x^2 - [sum of zeros]x + [product of zeros]}	
	k{x ² - [-1/8]x - 1/4}	
	$k{x^2 + 1/8x - 1/4}$	
	putting k = 8	
	$8(x^2 + 1/8x - 1/4)$	
	$8x^2 + x - 2>$ is the required polynomial	
22.	Prove that $\sqrt{5}$ is an irrational number.	2
	Let $\sqrt{5}$ be a rational number.	
	then it must be in form of p/q where, $q \neq 0$ (p and q are co-prime)	
	√5=pq	
	√5×q=p	
	Squaring on both sides,	
	5q ² =p ² (1)	
	P ² is divisible by 5.	
	So, p is divisible by 5.	
	p=5c	
	Squaring on both sides,	
	$P^2 = 25c^2$ (2)	
	Put p ² in eqn.(1)	
	$5q^2 = 25(c)^2$	
	q ² =5c ²	
	So, q is divisible by 5.	
	Thus p and q have a common factor of 5.	
	So, there is a contradiction as per our assumption.	

	We have assumed p and q are co-prime but here they a common factor of 5.	
	The above statement contradicts our assumption.	
	Therefore, $\sqrt{5}$ is an irrational number.	
23.	Solve the following pair of linear equations in two variables.	2
	7x - 2y = 5 and $8x + 7y = 15$	
	Also state the nature of its graph.	
	Here the given system of equations are 7x - 2y = 5 (1) 8x + 7y = 15 (2) From Equation 1 we get 7x = 5 + 2y x = 5 + 2y	
	$\Rightarrow x = \frac{3+2y}{7}$ Substituting the value of x in Equation 2 we get $8\left(\frac{5+2y}{7}\right) + 7y = 15$ $\Rightarrow \frac{8(5+2y)+49y}{7} = 15$ $\Rightarrow \frac{40+16y+49y}{7} = 15$ $\Rightarrow \frac{40+65y}{7} = 15$ $\Rightarrow 40+65y = 105$ $\Rightarrow 65y = 65$ $\Rightarrow y = 1$ Putting $y = 1$ in Equation 1 we get $7x - (2 \times 1) = 5$ $\Rightarrow 7x - 2 = 5$ $\Rightarrow 7x = 7$ $\Rightarrow x = 1$ Hence the required solution is $x = 1$, $y = 1$	
	It has a unique solution and the graphs intersects at one point	
24	If $4act^2 4\Gamma$, $acc^2 CO$, $bcin^2 CO$, $bcin^3$ find the value of r	2
24.	If $4\cot^2(45^\circ) - \sec^2(60^\circ) + \sin^2(60^\circ) + n = \frac{3}{4}$, find the value of p	2
	$4 \times 1^2 - 2^2 + (\frac{\sqrt{3}}{2})^2 + p = \frac{3}{4}$	
	$4 - 4 + \frac{3}{4} + p = \frac{3}{4}$	
	$p = \frac{3}{4} - \frac{3}{4}$	
	p = 0	

	Or	
	Prove that $\frac{(\sin A)^2}{1-\cos A} = \frac{1+\sec A}{\sec A}$	
	LHS $\frac{1 + \sec A}{\sec A} = \frac{\frac{1 + \frac{1}{\cos A}}{\frac{1}{\cos A}}}{\frac{1}{\cos A}}$	
	$= \frac{\frac{\cos A + 1}{\cos A}}{1}$	
	$= \frac{\frac{1}{\cos A}}{\frac{\cos A + 1}{\cos A}} \times \frac{\frac{\cos A}{1}}{1}$	
	$= 1 + \cos A$ $= 1 + \cos A \times \frac{1 - \cos A}{1 - \cos A}$	
	$=\frac{(1)^{2} - (\cos A)^{2}}{1 - \cos A}$ 1 - \cos^{2} A	
	$= \frac{1 - \cos A}{\sin^2 A}$ $= \frac{\sin^2 A}{1 - \cos A}$	
	= RHS	
25.	If the centre of a circle is $(2a, a - 7)$, then find the values of a, if the circle passes through the point $(11, -9)$ and has diameter $10\sqrt{2}$ units.	2
	Let the given point $P(x_1, y_1) = (11, -9)$ lie on a circle with	
	$C(x_2, y_2) = (2a, a - 7)$ & radius = r.	
	Then $PC = r(i)$	
	Given that the diameter of the circle = $10\sqrt{2}$ units.	
	$\therefore r = \frac{\text{definition}}{2} = \frac{1002 \text{ diffes}}{2} = 5\sqrt{2 \text{ units}}(\text{ii}).$	

	Again, by distance formula, $d = \sqrt{(x_1 - x_2)^2 + (y_2 - y_3)^2}$	
	$P(x) = \frac{1}{\sqrt{(x - x)^2 + (x - x + x)^2}} = \sqrt{\frac{1}{x - x^2 + (x - x + x)^2}}$	
	$\therefore PC = d = v(11 - 2a) + (-9 - a + 7) = v_5a^2 - 40a + 125.$	
	\therefore From (1) & (1) we get	
	$5a^2 - 40a + 125 = (5\sqrt{2})^2$	
	$\Rightarrow 5a^2 - 40a + 75 = 0$	
	$\Rightarrow (a-5)(5a-3) = 0$	
	\Rightarrow a = 5, $\frac{3}{5}$	
	Ans $a = 5, \frac{3}{5}$	
	Or	
	If the point $P(x, y)$ is equidistant from the points $A(a+b, b - a)$ and $B(a - b, a + b)$. Prove that $bx = ay$	
	Let P(x,y), Q(a+b,b-a) and R(a-b,a+b) be the given points. Then, PQ=PR $\Rightarrow \sqrt{\{x - (a + b)\}^2 + \{y - (b - a)\}^2} = \sqrt{\{x - (a - b)\}^2 + \{y - (a + b)\}^2}$ $\Rightarrow \{x - (a + b)\}^2 + \{y - (b - a)\}^2 = \{x - (a - b)\}^2 + \{y - (a + b)\}^2$ $\Rightarrow x^2 - 2x(a + b) + (a + b)^2 + y^2 - 2y(b - a) + (b - a)^2$ $= x^2 + (a - b)^2 - 2x(a - b) + y^2 - 2y(a + b) + (a + b)^2$ $\Rightarrow -2x(a + b) - 2y(b - a) = -2x(a - b) - 2y(a + b)$ $\Rightarrow ax + bx + by - ay = ax - bx + ay + by$ $\Rightarrow 2bx = 2ay \Rightarrow bx = ay$ REMARK-We know that a point which is equidistant from point P and Q lies on the perpendicular bisector of PQ. Therefore, bx=ay is the equation of the perpendicular bisector of PQ.	
	SECTION C	
	SECTION C CONSISTS OF 6 QUESTONS OF 3 MARKS EACH	
26.	Rohan's mother is 26 years older than him. The product of their ages 3 years from now will be 360. Formulate the quadratic equation to find their ages and find the mother's present age.	3

	Let Rohan present age be x years. Then, his mother's age is (x	z + 26) years.		
	Rohan's age after 3 years = $(x + 3)$ years			
	After 3 years the age of Rohan's mother= (x + 26 + 3)years=	(x + 29) years		
	It is given that after 3 years from now, the product of Rohan's ages will be 360 years	and his mother's		
	∴ $(x + 3)(x + 29) = 360 \Rightarrow x^2 + 32x - 273 = 0$ answer			
	This is the required equation.			
	$\therefore (x+39)(x-7) = 0$			
	$\therefore x = -39 \text{ and } x = 7$			
	$\therefore x = 7$ ($\therefore x$ can not be negative)			
	\therefore Mother's present age= 7 + 26 = 33answer			
	Or			
	A motor boat, whose speed is 20 km/l to go 48 km upstream than to return Find the speed of the stream.	ater takes 1 hour more n to the same spot.		
	Let, the speed of the stream be x km/hr Speed of boat in still water = 20 km/hr	$\Rightarrow \frac{2x}{400 - x^2} =$ $\Rightarrow 96x = 400 -$	$\frac{1}{48}$	
	∴Speed of boat with downstream 20 + x km/hr ∴ Speed of boat with upstream 20 – x km/hr	$\Rightarrow x^2 + 96x - 4$	00 = 0	
	As per given condition $\frac{48}{48} = \frac{48}{18} = 1$	$\Rightarrow x^2 + 100x -$ $\Rightarrow x(x + 100) -$	4x - 400 - $4(x + 100) = 0$	
	$20 - X = 20 + X^{-1}$	\Rightarrow (x - 4)(x + 1	.00) = 0	
	$\implies 48\left[\frac{1}{20-x} - \frac{1}{20+x}\right] = 1$	Either, x = 4 or x	= -100	
	$\begin{bmatrix} 20 + x - 20 + x \end{bmatrix}$ 1	∵ Speed cannot b	e negative \therefore x = 4 km/hr is considered.	
	$\Rightarrow \left\lfloor \frac{1}{(20-x)(20+x)} \right\rfloor = \frac{1}{48}$	\therefore the speed of the	estream = 4 km/hr	
~ 7	The data course to the basis of the second	dalara bir - P		2
27.	Find the ratio in which the y – axis div points (6, -4) and (-2, -7). Also find th	vides the lir he point of	ne segment joining the intersection.	3

	Given two points $A(-2,-7)$ and $B(6,-4)$		
	Let $P(0,a)$ be a point on y -axis divides the line segment AB in the ratio $1:k$		
	Using section formula, $m{x}$ coordinates of P can be written as:		
	$0 = rac{1(6) + k(-2)}{1 + k}$		
	-2k = -6		
	k=3		
	y-axis divides the line AB in $1:3$ ratio		
	Further, $m{y}$ coordinate of P can be expressed as,		
	$a=rac{1(-4)+k(-7)}{1+k}$		
	$a = \frac{-4 + 3(-7)}{-7}$		
	$a = \frac{1+3}{1+3}$		
	$a=-rac{25}{4}$		
	Point of intersection:		
	$\left(0,-rac{25}{4} ight)$		
28.	Prove that $\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1} = \operatorname{cosec} A + \cot A$, using the identity $\operatorname{cosec}^2 A$	= 1	3
	+ cot ² A		
	L.H.S. $\cos A - \sin A + 1$		
	$\cos A + \sin A - 1$		
	On rationalize and we get, $(\cos A + \sin A) + 1$		
	$\frac{\cos A - \sin A + 1}{(\cos A + \sin A) - 1} \times \frac{(\cos A + \sin A) + 1}{(\cos A + \sin A) + 1}$		
	$= \frac{\cos^2 A + \cos A \sin A + \cos A - \sin A \cos A - \sin^2 A - \sin A + \cos A + \sin A}{\cos^2 A - \sin^2 A$		
	$(\cos A + \sin A)^2 - 1^2$		
	$= \frac{\cos^2 A - \sin^2 A + 2\cos A + 1}{\cos^2 A + \sin^2 A + 2\sin A\cos A - 1}$		
	$= \frac{\cos^2 A + 2\cos A + 1 - \sin^2 A}{\cos^2 A + 2\cos A + 1 - \sin^2 A}$		
	$1 + 2 \sin A \cos A - 1$ $2\cos^2 A + 2 \cos A$		
	$=\frac{2\cos 12^{2}\cos 12^{2}}{2\sin A\cos A}$		
	$=\frac{2\cos A(\cos A+1)}{2\sin A\cos A}$		
	$= \frac{\cos A + 1}{1}$		
	$\sin A$ $\cos A$ 1		
		1	
	$= \frac{1}{\sin A} + \frac{1}{\sin A}$ $= \csc A + \cot A$		
	$= \frac{1}{\sin A} + \frac{1}{\sin A}$ $= \csc A + \cot A$ R.H.S.		

	Or	
Prove that: $\frac{\sin \theta - 2 \sin^3 \theta}{2 \cos^3 \theta - \cos \theta} = \tan \theta$		
L.H.S. = $\frac{\sin \theta - 2 \sin^3 \theta}{2 \cos^3 \theta - \cos \theta}$		
$=\frac{\sin\theta(1-2\sin^2\theta)}{\cos\theta(2\cos^2\theta-1)}$		
We know that $\cos 2\theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1$		
Therefore, = $\frac{\sin \theta(\cos 2\theta)}{\cos \theta(\cos 2\theta)}$		
$=\frac{\sin\theta}{\cos\theta}$		
$= \tan \theta$		
R.H.S Hence, proved.		
A 1.5 m tall boy is standing at The angle of elevation from his from 30° to 60° as he walks to walked towards the building. AB= 30-1.5=28.5 cm In Δ ABD : -tan30° = $\frac{AB}{BD}$ \Rightarrow BD = (28.5) $\sqrt{3}$ In Δ ABC : -tan60° = $\frac{AB}{BC}$ \Rightarrow BC = $\frac{(28.5)}{\sqrt{5}}$	some distance from a 30 m tall building. s eyes to the top of the building increase wards the building. Find the distance he	3
$CD = BD-BC$ $= 28.5(\sqrt{3} - \frac{1}{\sqrt{3}})$ $= 28.5(\frac{2}{\sqrt{3}}) = 32.91m$		
	Prove that: $\frac{\sin \theta - 2 \sin^3 \theta}{2 \cos^3 \theta - \cos \theta} = \tan \theta$ L.H.S. $= \frac{\sin \theta - 2 \sin^3 \theta}{2 \cos^3 \theta - \cos \theta}$ $= \frac{\sin \theta (1 - 2 \sin^2 \theta)}{\cos \theta (2 \cos^2 \theta - 1)}$ We know that $\cos 2\theta = 1 - 2 \sin^2 \theta = 2 \cos^2 \theta - 1$ Therefore, $= \frac{\sin \theta (\cos 2\theta)}{\cos \theta (\cos 2\theta)}$ $= \frac{\sin \theta}{\cos \theta}$ $= \tan \theta$ R.H.S Hence, proved. A 1.5 m tall boy is standing at The angle of elevation from his from 30° to 60° as he walks to walked towards the building. AB= 30°-1.5=28.5 cm In ΔABD : $-\tan 30^\circ = \frac{AB}{BD}$ $\Rightarrow BD = (28.5)\sqrt{3}$ In ΔABC : $-\tan 60^\circ = \frac{AB}{BC}$ $\Rightarrow BC = \frac{(28.5)}{\sqrt{3}}$ CD= BD-BC $= 28.5(\sqrt{3} - \frac{1}{\sqrt{3}})$ $= 28.5(\frac{2}{\sqrt{3}} - \frac{32.91m}{\sqrt{3}})$	or Prove that: $\frac{\sin \theta - 2 \sin^3 \theta}{2 \cos^3 \theta - \cos \theta} = \tan \theta$ LH.S. $= \frac{\sin \theta (-2 \sin^3 \theta)}{2 \cos^3 \theta - \cos \theta}$ $= \frac{\sin \theta (1 - 2 \sin^2 \theta)}{\cos \theta (2 \cos^2 \theta - 1)}$ We know that $\cos 2\theta = 1 - 2 \sin^2 \theta = 2 \cos^2 \theta - 1$ Therefore, $= \frac{\sin \theta (\cos 2\theta)}{\cos \theta (\cos 2\theta)}$ $= \frac{\sin \theta}{\cos \theta}$ $= \tan \theta$ R.H.S Hence, proved. A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increase from 30 to 60° as he walks towards the building. Find the distance he walked towards the building. AB= 30-1.5=28.5 cm In AABD : - tango [*] = $\frac{AB}{BD}$ $= BD = (28.5)\sqrt{3}$ In $\Delta ABC : - tango* = \frac{AB}{BC}$ $= 28.5(\sqrt{3} - \frac{1}{\sqrt{3}})$ $= 28.5(\sqrt{3} - \frac{1}{\sqrt{3}})$

30.	Find the median of the following frequency distribution							3	
	CLASS	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	
	FREQ	8	7	15	20	12	8	10	
	Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70	freq, 8 7 15 20 12 8 10	15 8 15 30 50 62 70 80	$\frac{h}{2} = \frac{1}{2}$ $\frac{1}{2} = \frac{3}{2}$ $C_{1}^{2} = \frac{3}{2}$ Median = 30 $= 30$	40 0 30 $l + (\frac{\eta_{2}}{20} + 5 = 31)$	- c2)xh b0)x10			
31.	Two differ numbers a Ha	rent dice obtainec	are thro I	wn togeth n 7	ner. Find t	the proba	ability tha	t the	3
	b. Ha c. Is	ve a pro a double	duct less t of odd r	than 16 numbers					
	Total nu	mber of all	possible out	comes = 6 ² =	36				
	(i) The	sum less th	$\tan 7 = (1, 1)$, (1, 2), (1, 3),	(1, 4), (1, 5)				
	= (2 No.	of favoura	3), (2, 4), (3, 1), ble out outc	(3, 2), (3, 3), (4, 5) iomes = 15	, 1), (4, 2), (5, 1)				
	P(h	ave sum les	ss than 7) =	$\frac{15}{36} = \frac{5}{12}$					
	(ii) Pro- (2, 1 (3, 5	duct less that 1), (2, 2), (2, 2) 5), (4, 1), (4, 2)	an $16 = (1, 2)$ 3), $(2, 4)$, $(2, 5)$ 2), $(4, 3)$, $(5, 1)$), (1, 3), (1, 4 5), (2, 6), (3, 1), (5, 2), (5, 3)), (1, 5), (1, 6)), (3, 2), (3, 4) , (6, 1), (6, 2)	,			
	No.	of favoura	ble out outc	omes = 24					
	P(h	ave a prod	uct less thar	ı 16)					
			=	$\frac{24}{36} = \frac{2}{3}$					
	(iii) Dou (3, 3	ublet of odd 3), (3, 5), (5,	1 numbers = 1), (5, 3), (5,	= (1, 1), (1, 3) . 5)	, (1, 5), (3, 1)	,			
	No.	of favoura	ble outcome	es = 9					
	∴. P(a do	oublet of od	ld number)						
	= 9/90 =	1/10							

	Or					
Pc ar at ot	Points A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If they travel in same direction at different speeds, they meet in 5 hours. If they travel towards each other, they meet in 1 hour. What are the speeds of the two cars?					
La	et the speed of car at A be x kmph nd the speed of car at B be y kmph					
w D t ∴	when the car travel in same direction Relative Speed is $x - y$ pist = 100km = 5 hours Dist = $S \times T$ too = $(x - y)5$					
v I I I 1	$-y = 20 \rightarrow (1)$ when car travel in opp direction Relative Speed is $x + y$ Dist = 100km x = 1 hours Dist = ST 100 = (x + y)1					
S x 2 x	$x + y = 100 \longrightarrow (II)$ Solving (I) & (II) x - y = 20 x + y = 100 2x = 120 x = 60 km/h					
y s T	y = 40 km/h Speed of the car at A = 60 km/h Speed of the car at B = 40 km/h The difference of speeds is 60 - 40 = 20					
33. Th	the ratio of the 11 th term to 17 th term of a. Find the ratio of 5 th term to 21 st term b. Also find the ratio of the sum of fin- terms 98. Given, $\frac{a_{11}}{a_{17}} = \frac{3}{4}$ $\Rightarrow \frac{a+10d}{a+16d} = \frac{3}{4}$ $\Rightarrow 4(a+10d) = 3(a+16d)$ $\Rightarrow 4a+40d = 3a+48d$ $\Rightarrow 4a+40d - 3a - 48d = 0 \Rightarrow a = 8d$	an AP is 3:4. rm of the same AP. st 5 terms to that to first 21 Also, $\frac{a_5}{a_{21}} = \frac{a+4d}{a+20d}$ $= \frac{8d+4d}{8d+20d}$ $= \frac{12d}{28d} = \frac{3}{7}$ i.e., 3:7 Required ratio $= \frac{S_5}{S_{21}}$ $= \frac{\frac{5}{2}[2a+(5-1)d]}{\frac{21}{2}[2a+(21-1)d]} = \frac{5[2a+4d]}{21[2a+20d]}$ $= \frac{5[2(8d)+4d]}{21[2(8d)+20d]}$ $= \frac{5\times 20d}{21\times 36d} = \frac{25}{189}$ i.e., 25:189	5			

	Let us consider the two poles of equal heights as AB and DC and the	
	distance between the poles as BC.	
	From a point O, between the poles on the road, the angle of elevation of	
	the top of the poles AB and CD are 60° and 50° respectively.	
	Let the height of the poles be x	
	Therefore AB = DC = x	
	Ιη ΔΑΟΒ,	
	tan 60° = AB/BO	
	√3 = x / BO	
	BO = x / √3(i)	
	In ΔOCD,	
	tan 30° = DC / OC	
	$1/\sqrt{3} = x / (BC - OB)$	
	$1/\sqrt{3} = x / (80 - x/\sqrt{3})$ [from (i)]	
	80 - x/√3 = √3x	
	$x/\sqrt{3} + \sqrt{3}x = 80$	
	$x(1/\sqrt{3}+\sqrt{3})=80$	
	x (1 + 3) / \sqrt{3} = 80	
	x (4/√3) = 80	
	$x = 80\sqrt{3} / 4$	
	x = 20√3	
	Height of the poles x = $20\sqrt{3}$ m.	
	Distance of the point O from the pole AB	
	BO = x/√3	
	= 20\/3/\/3	
	= 20	
	Distance of the point O from the pole CD	
	OC = BC - BO	
	= 80 - 20	
	= 60	
	The height of the poles is $20\sqrt{3}$ m and the distance of the point from the	
	poles is 20 m and 60 m.	
35.	Solve for x: $\frac{1}{1} + \frac{3}{1} = \frac{5}{1}$, $x \neq -1$, $\frac{-1}{2}$, -4	5
	x+1 $5x+1$ $x+4$ $5'$ $5'$	
		1

	$\frac{1}{x+1} + \frac{3}{5x+1} = \frac{5}{x+4}$					
	(x + 4) (5x + 1) + 3 (x + 1) (x + 4) = 5 (x + 1) (5x + 1)					
	$5x^2 + 21x + 4 + 3x^2 + 15x + 12 = 25x^2 + 30x + 5$					
	$8x^2 + 36x + 16 = 25x^2 + 30x + 5$					
	$-17x^2 + 6x + 11 = 0$					
	$x = \frac{-6 \pm \sqrt{6^2 - 4(-17)11}}{2(-17)}$					
	$x = -\frac{-6 \pm \sqrt{784}}{34}$					
	$x = -\frac{-6 \pm 28}{34}$					
	$X = -\frac{11}{17}, 1$					
	CASE BASED OUESTIONS					
	CASE BASED QUESTIONS					
36.	CASE STUDY 1:					
	Rajeev went out from his house to reach the office. But he had to get some work done before going to the office. So, he first of all went to the bank first, from there he went to his son's school, and then reaches to office. The position of home, school, bank and office on coordinate axis is shown in the following figure: (Assume that all distances covered are in straight lines). If the house is situated at (2, 4), bank at (5, 8), school at (13, 14) and office at (13, 26) and coordinates are in km, then answer the following questions:					
	House $(2, 4)$ (2, 4) (13, 14) (2, 4) (13, 14) (13, 26)					

	a. If Rajeev goes directly from bank to his office, how much distance he would travel?					1	
	b.How much distance he will travel, if goes directly from home to the office? Answer = $\sqrt{605}$ = 24.5km Or						2
	Find the distance of the point (-6, 8) from the origin Answer = 10 units						
	c. If at the are the Answer = (9, 3	mid-point coordinates	of the bank s of the park	and school, ?	there is a _l	oark, what	1
37.	CASE STUDY: As the demand of the products grew, a manufacturing company decided to hire more employees. For which they want to know the mean time required to complete the work for a worker.						
	The following table shows the frequency distribution of the time required for each worker to complete the work.						
	TIME IN HOURS	15 - 19	20 – 24	25 – 29	30 - 34	35 - 39	
	NUMBER OF WORKERS	10	15	12	8	5	
	a. Find the in hours Answer : 25	mean time 5.3	e required to	o complete t	he work for	a worker	1
	B. Find mode of the data Answer: 22.6 OR					2	
	Find me Answer: 24	dian of the I.5	data.				
	C. If a worker works for 8hrs a day, then find approximate time required to complete the work for a worker (in days)					1	
	Answer : 3 day	/S					

38.	CASE STUDY:	
	A boy 4 m tall spots a pigeon sitting on the top of a pole of height 54m from the ground. The angle of elevation of the pigeon from the eyes of boy at any instant is 60°. The pigeon flies away horizontally in such a way that it remained at a constant height from the ground. After 8 seconds, the angle of evaluation of the pigeon from the same point is 45° . Based on the above information answer the following questions (take $\sqrt{3} = 1.73$ POLE	
	i. If the distance between the positions of pigeon increases, then	1
	the angle of elevation	
	(a) Increases (b) Decreases (c) Remains unchanged (d) can't say	
	ii. Find the distance between the boy and the pole.	2
	(a) 50m (b) $\frac{33}{\sqrt{3}}m$	
	Or	
	How much distance the pigeon covers in 8 seconds?	
	(a) 12.13m (b) 19.60m	
	(C) 21.09III (U) 20.32III	
	iii. Find the distance of first position of the pigeon from the eyes of	1
	(a) 54m (b) 100m	
	(c) $\frac{100}{\sqrt{3}} m$ (d) $100\sqrt{3}$	