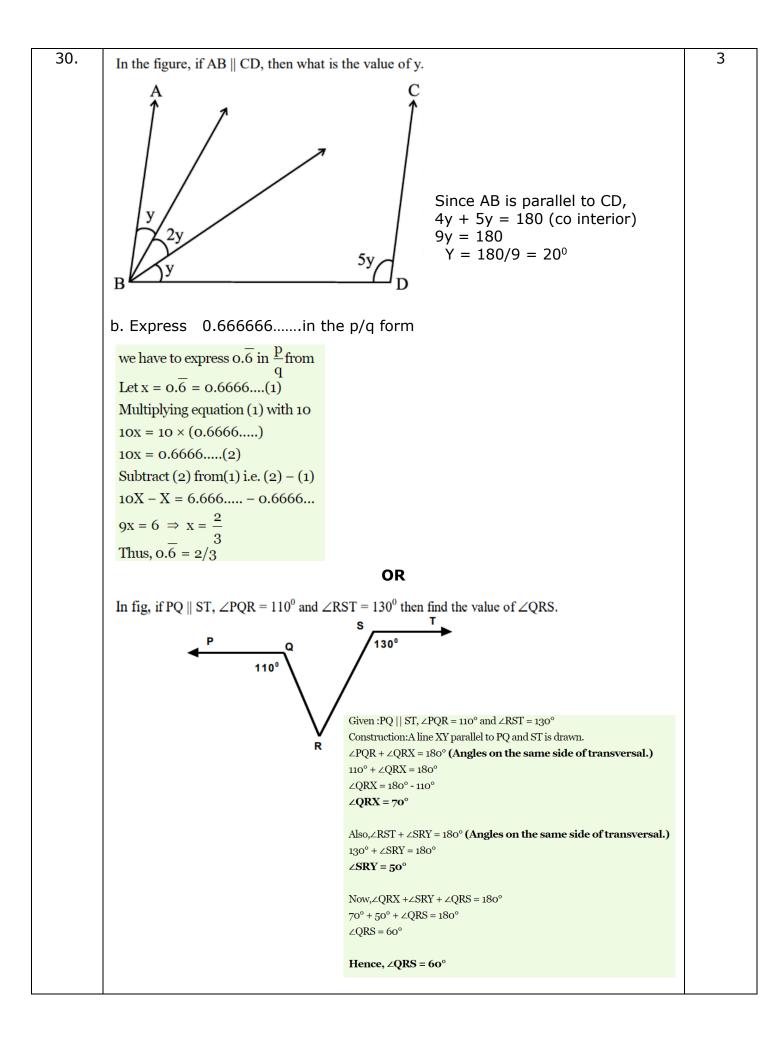


| DATE: 30/09/2024 | FIRST TERMINAL EXAMINATION (2024 - 25) | TIME: 3 Hrs   |
|------------------|----------------------------------------|---------------|
| GRADE: IX        | MARKING SCHEME MATHEMATICS (041)       | MAX MARKS: 80 |

**GENERAL INSTRUCTIONS:** 

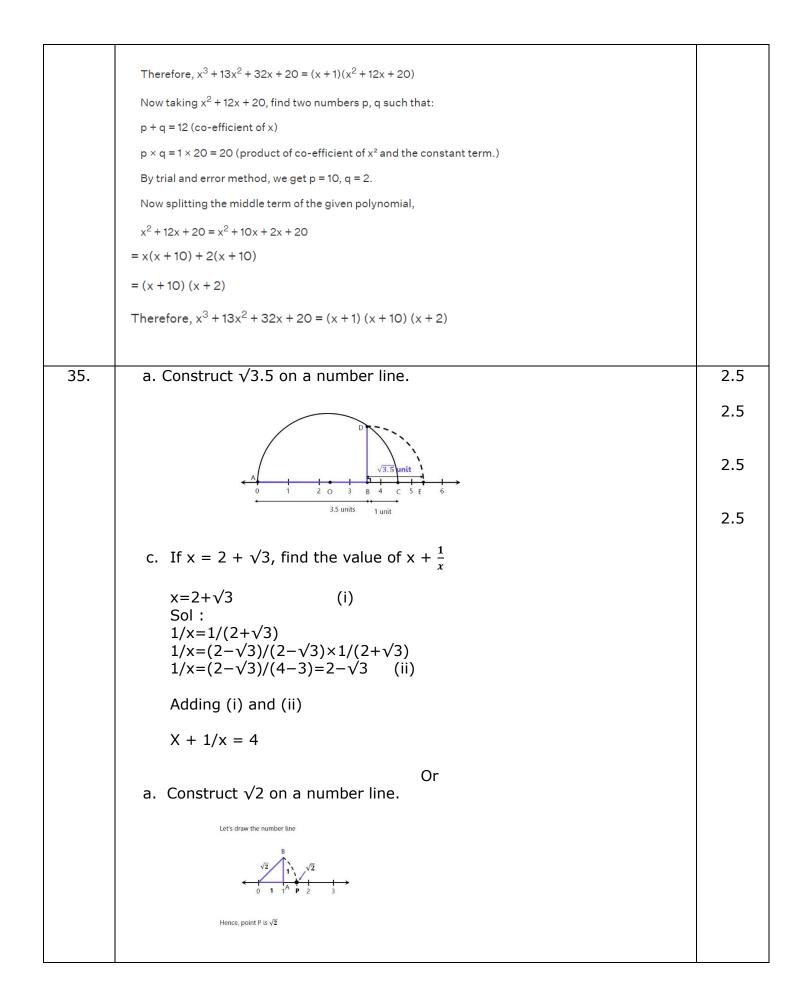

- 1. THIS QUESTION PAPER HAS 5 SECTIONS A, B, C, D, E
- 2. SECTION A HAS 20 MCQS CARRYING 1 MARK EACH
- 3. SECTION B HAS 5 QUSTIONS CARRYING 2 MARKS EACH
- 4. SECTION C HAS 6 QUESTIONS CARRYING 3 MARKS EACH
- 5. SECTION D HAS 4 QUESTIONS CARRYING 5 MARKS EACH
- 6. SECTION E HAS 3 CASE BASED INTERGRATED UNITS OF ASSESSMENT (4 MARKS EACH) WITH SUBPARTS OF THE VALUES OF 1, 1 AND 2 MARKS EACH RESPECTIVELY.
- 7. ALL QUESTIONS ARE COMPULSORY. HOWEVER, AN INTERNAL CHOICE IN 2 QUESTIONS OF 5 MARKS, 2 QUESTIONS OF 3 MARKS AND 2 QUESTIONS OF 2 MARKS HAS BEEN PROVIDED.

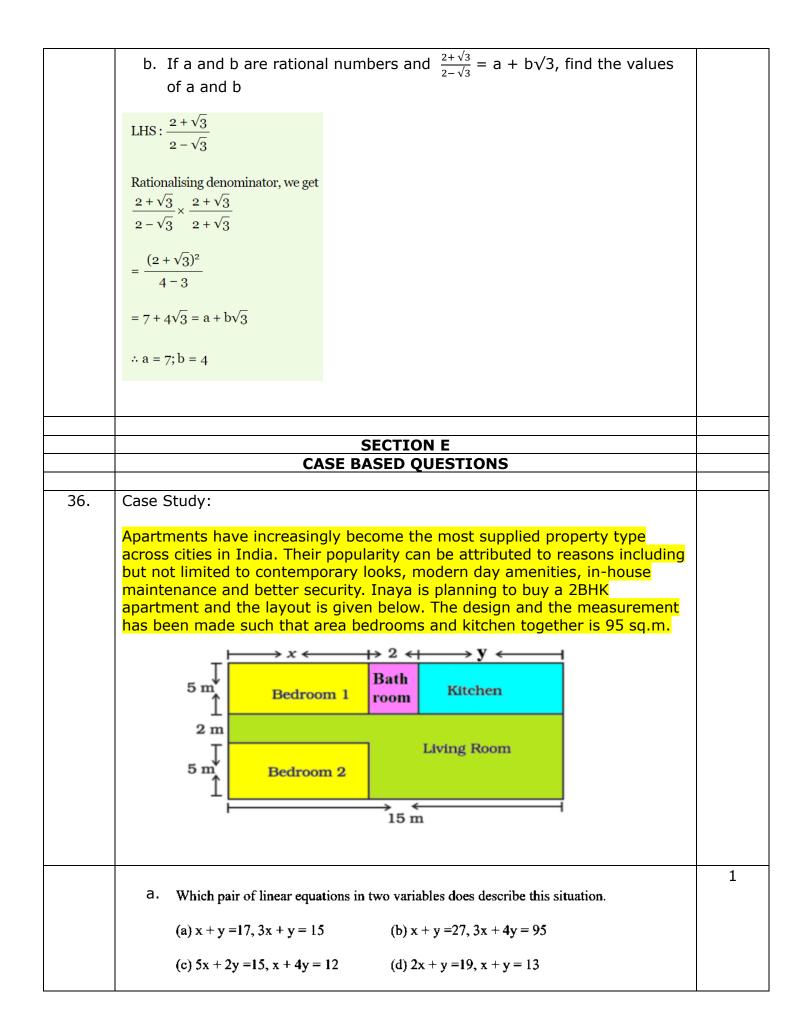
| SL.<br>NO. | SECTION A                                                          | MARKS |
|------------|--------------------------------------------------------------------|-------|
|            | SECTION A CONSISTS OF 20 QUESTIONS OF 1 MARK EACH                  |       |
|            |                                                                    |       |
| 1.         | a. 11 <sup>1/4</sup>                                               | 1     |
| 2.         | C. 1                                                               | 1     |
| 3.         | b.16380                                                            | 1     |
| 4.         | d. y - axis                                                        | 1     |
| 5.         | c. infinitely many                                                 | 1     |
| 6.         | d. 72 <sup>0</sup>                                                 | 1     |
| 7.         | a. 100 <sup>0</sup> and 80 <sup>0</sup>                            | 1     |
| 8.         | d. 360 <sup>0</sup>                                                | 1     |
| 9.         | c. 30 <sup>0</sup>                                                 | 1     |
| 10.        | a. $\frac{7}{2}$                                                   | 1     |
| 11.        | a. 2                                                               | 1     |
| 12.        | a. Is always an irrational number                                  | 1     |
| 13.        | a. 2x                                                              | 1     |
| 14.        | c. (3,0)                                                           | 1     |
| 15.        | c. 6                                                               | 1     |
| 16.        | d. $(x + 1)(x^2 - x + 1)$                                          | 1     |
| 17.        | a. 3                                                               | 1     |
| 18.        | c. 60 <sup>0</sup>                                                 | 1     |
| 19.        | b. Both A and R are true and R is not the correct explanation of A | 1     |
| 20.        | d. Both A and R is false                                           | 1     |
|            |                                                                    |       |

|     | SECTION B                                                                                                                                                                                                                                        |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | SECTION B CONSISTS OF 5 QUESTIONS OF 2 MARKS EACH                                                                                                                                                                                                |   |
| 21. | Find the measure of an angle, if seven times its complement is 10° less than three times its supplement.                                                                                                                                         | 2 |
|     | Let angle = x<br>Complement of angle = $90 - x$<br>Supplement of angle = $180 - x$<br>From question<br>$7(90^{\circ} - x) = 3(180^{\circ} - x) - 10$<br>4x = 100<br>$x = 25^{\circ}$                                                             |   |
|     | Or                                                                                                                                                                                                                                               |   |
|     | In the below Figure, AB, CD and EF are three lines concurrent at O. Find the value of $y$ .                                                                                                                                                      |   |
|     | Given, AB, CD and EF are three lines concurrent at O.                                                                                                                                                                                            |   |
|     | We have to find the value of y.                                                                                                                                                                                                                  |   |
|     | We know that the vertically opposite angles are equal. $2y$ $2y$ $2y$                                                                                                                                                                            |   |
|     | $\angle AOE = \angle BOF$                                                                                                                                                                                                                        |   |
|     | So, ∠BOF = 5y 5y                                                                                                                                                                                                                                 |   |
|     | From the figure,                                                                                                                                                                                                                                 |   |
|     | $\angle COE + \angle AOE + \angle AOD = 180^{\circ}$                                                                                                                                                                                             |   |
|     | 2y + 5y + 2y = 180°                                                                                                                                                                                                                              |   |
|     | 4y + 5y = 180°                                                                                                                                                                                                                                   |   |
|     | 9y = 180°                                                                                                                                                                                                                                        |   |
|     | y = 180°/9                                                                                                                                                                                                                                       |   |
|     | y = 20°                                                                                                                                                                                                                                          |   |
|     | Therefore, the value of y is 20°.                                                                                                                                                                                                                |   |
| 22. | Five years ago Arjun's age was three times Shriya's age. If age of Arjun is x years and age of Shriya is y years, represent the above statement as a linear equation in two variables in the standard form and mention the values of a, b and c. | 2 |
|     | Given Arjun's age = x years and Shriyas age = y years<br>According to the condition: $(x -5) = 3(y - 5)$<br>X - 5 = 3y - 15<br>X - 3y + 10 = 0                                                                                                   |   |
|     | a = 1, b = - 3, c = 10                                                                                                                                                                                                                           |   |

| 23. | Show that $\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2} = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | We have,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|     | $\frac{1}{(3-\sqrt{8})} - \frac{1}{(\sqrt{8}-\sqrt{7})} + \frac{1}{(\sqrt{7}-\sqrt{6})} - \frac{1}{(\sqrt{6}-\sqrt{5})} + \frac{1}{(\sqrt{5}-2)} = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|     | LH.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|     | $\frac{1}{(3-\sqrt{8})} - \frac{1}{(\sqrt{8}-\sqrt{7})} + \frac{1}{(\sqrt{7}-\sqrt{6})} - \frac{1}{(\sqrt{6}-\sqrt{5})} + \frac{1}{(\sqrt{5}-2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|     | By rationalize every part and we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|     | $\frac{1}{(3-\sqrt{8})} \times \frac{(3+\sqrt{8})}{(3+\sqrt{8})} - \frac{1}{(\sqrt{8}-\sqrt{7})} \times \frac{(\sqrt{8}+\sqrt{7})}{(\sqrt{8}+\sqrt{7})} + \frac{1}{(\sqrt{7}-\sqrt{6})} \times \frac{(\sqrt{7}-\sqrt{6})}{(\sqrt{7}-\sqrt{6})} + \frac{1}{(\sqrt{7}-\sqrt{6})} + \frac{1}{(\sqrt{7}-\sqrt{6})} + \frac{(\sqrt{7}-\sqrt{6})}{(\sqrt{7}-\sqrt{6})} + \frac{1}{(\sqrt{7}-\sqrt{6})} + \frac{(\sqrt{7}-\sqrt{6})}{(\sqrt{7}-\sqrt{6})} + \frac{(\sqrt{7}-\sqrt{6})}{(\sqrt{7}-\sqrt{6})}} + \frac{(\sqrt{7}-\sqrt{6})}{(\sqrt{7}-\sqrt{6})} + \frac{(\sqrt{7}-\sqrt{6})}{(\sqrt{7}-\sqrt{6})} + \frac{(\sqrt{7}-\sqrt{6})}{(\sqrt{7}-\sqrt{6})} + \frac{(\sqrt{7}-\sqrt{6})}{(\sqrt{7}-\sqrt{6})} + \frac{(\sqrt{7}-\sqrt{6}$ |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|     | $-\frac{1}{(\sqrt{5}-\sqrt{5})} \times \frac{(\sqrt{5}+\sqrt{5})}{(\sqrt{5}+\sqrt{5})} + \frac{1}{(\sqrt{5}-2)} \times \frac{(\sqrt{5}+2)}{(\sqrt{5}+2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|     | $= \frac{(3+\sqrt{8})}{(9-8)} - \frac{(\sqrt{8}+\sqrt{7})}{8-7} + \frac{(\sqrt{7}+\sqrt{6})}{7-6} - \frac{(\sqrt{6}+\sqrt{5})}{6-5} + \frac{(\sqrt{5}+2)}{5-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|     | $= \frac{1}{(9-8)} - \frac{1}{8-7} + \frac{1}{7-6} - \frac{1}{6-5} + \frac{1}{5-4}$ $= 3 + \sqrt{8} - \sqrt{7} + \sqrt{7} + \sqrt{6} - \sqrt{6} - \sqrt{5} + \sqrt{5} + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|     | = 3 + 2 = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|     | R.H.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|     | Prove that $\frac{a^{-1}}{a^{-1}+b^{-1}} + \frac{a^{-1}}{a^{-1}-b^{-1}} = \frac{2b^2}{b^2-a^2}$<br>$\frac{a^{-1}}{a^{-1}+b^{-1}} + \frac{a^{-1}}{a^{-1}-b^{-1}} = \frac{2b^2}{b^2-a^2}$ $LHS. = \frac{a^{-1}}{a^{-1}+b^{-1}} + \frac{a^{-1}}{a^{-1}-b^{-1}}$ $= \frac{\frac{1}{a}}{\frac{1}{a}+\frac{1}{b}} + \frac{\frac{1}{a}}{\frac{1}{a}-\frac{1}{b}}$ $= \frac{\frac{1}{a}}{\frac{b^{+}a}{ab}} + \frac{\frac{1}{a}}{\frac{b^{-}a}{ab}}$ $= \frac{1}{a} \times \frac{ab}{b+a} + \frac{1}{a} \times \frac{ab}{b-a}$ $= \frac{b}{b+a} + \frac{b}{b-a}$ $= \frac{b^2 - ab + b^2 + ab}{b^2 - a^2}$ $= \frac{2b^2}{b^2 - a^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 24  | = R.H.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 |
| 24. | If $p(y) = y^3 - 3y^2 + 4y - 6$ , then evaluate $p(3) - p(-1) + p(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 |
|     | P(3) = 27 - 27 + 12 - 6 = 6<br>P(-1) = -1 - 3 - 4 - 6 = -14<br>P(0) = -6<br>p(3) - p(-1) + p(0) = 614 + 6 = 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| 25. | Write the decimal expansion of $4\frac{1}{8}$ and state what type of decimal it is.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 |
|     | $4\frac{1}{8} = 4.125$ . It has a terminating decimal expansion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |

|     | SECTION C<br>SECTION C CONSISTS OF 6 QUESTONS OF 3 MARKS EACH                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| 26. | Factorise: (a) $6x^2 + 7x - 3$<br>Given, the polynomial is $6x^2 + 7x - 3$ .<br>We have to factorise the polynomial.<br>On factoring by splitting the middle term,<br>$6x^2 + 7x - 3$<br>$6x^2 + 9x - 2x - 3$<br>3x(2x + 3) - 1(2x + 3)<br>(3x - 1)(2x + 3)<br>Therefore, the factors are $(2x + 3)$ and $(3x - 1)$ .                                                                                                                                                | 3 |
|     | (b) $1 + 8y^3 = (1 + 2y)(1 - 2y + 4y^2)$                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 27. | Simplify with positive exponent: (a) $(27)^{\frac{-1}{3}} \times (32)^{\frac{2}{5}} = 4/3$<br>(b) $(16)^{\frac{-1}{4}} + (25)^{\frac{-1}{2}} = 7/10$<br>OR<br>Simplify by rationalising the denominator: $\frac{6-4\sqrt{2}}{6+4\sqrt{2}} \bigoplus \frac{(6-4\sqrt{2})}{(6)^2 - (4\sqrt{2})^2}$<br>$\Rightarrow \frac{(6-4\sqrt{2})^2}{(6)^2 - (4\sqrt{2})^2}$<br>$\Rightarrow \frac{36+32-48\sqrt{2}}{36-32}$<br>$= \frac{68-48\sqrt{2}}{4}$<br>$= 17-12\sqrt{2}.$ | 3 |
| 28. | If $(x + 1)$ is a factor of $ax^3 + x^2 - 2x + 4a - 9$ , find the value of a.<br>Let $p(x) = ax^3 + x^2 - 2x + 4a - 9$<br>Since $x + 1$ is a factor, $p(-1) = 0$<br>-a + 1 + 2 + 4a - 9 = 0<br>3a = 6, $a = 6/3 = 2$                                                                                                                                                                                                                                                 | 3 |
| 29. | Three vertices of a rectangle are (4, 2), (-3, 2) and (-3, 7). Plot these<br>points and find the coordinates of the fourth vertex. Also find the area of the<br>rectangle so formed.<br>Fourth vertex = (4, 7)<br>Area of rectangle = 5 x 7 = 35 squnits                                                                                                                                                                                                             | 3 |





| 31. | If $x = 3k + 2$ and $y = 2k - 1$ is a solution of the equation $4x - 3y + 1 = 0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | find k.<br>Also find two solutions for the equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |
|     | It is given that $4x - 3y + 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|     | Now by substituting the value of $x$ and $y$ in the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|     | 4(3k+2)-3(2k-1)+1=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|     | On further calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|     | 12k + 8 - 6k + 3 + 1 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|     | 6k+12=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|     | So we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|     | 6k = -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|     | By division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|     | k=-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|     | SECTION D<br>SECTION D CONSISTS OF 4 OUESTIONS OF 5 MARKS EACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|     | SECTION D<br>SECTION D CONSISTS OF 4 QUESTIONS OF 5 MARKS EACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 32. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 |
| 32. | SECTION D CONSISTS OF 4 QUESTIONS OF 5 MARKS EACH<br>a. In the given figure, ray OS stands on a line POQ.<br>Ray OR and ray OT are angle bisectors of<br>$\angle$ POS and $\angle$ SOQ, respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 |
| 32. | SECTION D CONSISTS OF 4 QUESTIONS OF 5 MARKS EACHa. In the given figure, ray OS stands on a line POQ.<br>Ray OR and ray OT are angle bisectors of<br>$\angle$ POS and $\angle$ SOQ, respectively.<br>If $\angle$ POS = x, find $\angle$ ROT.If $\angle$ POS = x, find $\angle$ ROT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 |
| 32. | SECTION D CONSISTS OF 4 QUESTIONS OF 5 MARKS EACHa. In the given figure, ray OS stands on a line POQ.<br>Ray OR and ray OT are angle bisectors of<br>$\angle$ POS and $\angle$ SOQ, respectively.<br>If $\angle$ POS = x, find $\angle$ ROT.<br>Since ray OS stands on the line POQ. Therefore,If $\angle POS = x, find \angle ROT.$<br>PIf $\angle POS = x, find \angle ROT.$<br>P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 |
| 32. | SECTION D CONSISTS OF 4 QUESTIONS OF 5 MARKS EACHa. In the given figure, ray OS stands on a line POQ.<br>Ray OR and ray OT are angle bisectors of<br>$\angle$ POS and $\angle$ SOQ, respectively.<br>If $\angle$ POS = x, find $\angle$ ROT.<br>Since ray OS stands on the line POQ. Therefore,<br>$\angle POS + \angle SOQ = 180^{\circ}$ Image: Constant of the pode is a constant of the pode is constant of the pode | 5 |
| 32. | SECTION D CONSISTS OF 4 QUESTIONS OF 5 MARKS EACHa. In the given figure, ray OS stands on a line POQ.<br>Ray OR and ray OT are angle bisectors of<br>$\angle$ POS and $\angle$ SOQ, respectively.<br>If $\angle$ POS = x, find $\angle$ ROT.<br>Since ray OS stands on the line POQ. Therefore,<br>$\angle POS + \angle SOQ = 180^{\circ}$ Image: Constant of the second standard sta | 5 |
| 32. | <b>SECTION D CONSISTS OF 4 QUESTIONS OF 5 MARKS EACH</b><br>a. In the given figure, ray OS stands on a line POQ.<br>Ray OR and ray OT are angle bisectors of<br>$\angle$ POS and $\angle$ SOQ, respectively.<br>If $\angle$ POS = x, find $\angle$ ROT.<br>Since ray OS stands on the line POQ. Therefore,<br>$\angle POS + \angle SOQ = 180^{\circ}$<br>$\Rightarrow x + \angle SOQ = 180^{\circ} - x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 |
| 32. | <b>SECTION D CONSISTS OF 4 QUESTIONS OF 5 MARKS EACH</b><br>a. In the given figure, ray OS stands on a line POQ.<br>Ray OR and ray OT are angle bisectors of<br>$\angle$ POS and $\angle$ SOQ, respectively.<br>If $\angle$ POS = x, find $\angle$ ROT.<br>Since ray OS stands on the line POQ. Therefore,<br>$\angle POS + \angle SOQ = 180^{\circ}$<br>$\Rightarrow x + \angle SOQ = 180^{\circ}$<br>$\Rightarrow \angle SOQ = 180^{\circ} - x$<br>$\Rightarrow 2\angle SOT = 180^{\circ} - x$ [: OT is bisector of $\angle SOQ$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 |

b. In Fig. lines XY and MN intersect at O. If  $\angle$  POY = 90° and a : b = 2 : 3, find c. In the given figure,  $\angle POY = 90^{\circ}$  $\angle POX + \angle POY = 180^{\circ}$  (Linear pair)  $\angle POX + 90^{\circ} = 180^{\circ}$  $\Rightarrow \angle POX = 90^{\circ}$ a:b=2:3 Let  $a = 2x^{\circ}$ and  $b = 3x^{\circ}$  $\angle POX = a + b = 5x$  $90^{\circ} = 5x$  $\Rightarrow x = 18^{\circ}$  $\angle MOX = b = 3x = 54^{\circ}$  $\angle MOX + \angle NOX = 180^{\circ}$  (Linear pair)  $b + c = 180^{\circ}$  $54^{\circ} + c = 180^{\circ}$  $c = 180^{\circ} - 54^{\circ} = 126^{\circ}$ Or a. In Fig. , POQ is a line. Ray OR is perpendicular to line PQ. OS is another R ray lying between rays OP and OR. Prove that  $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$  $\angle ROS = 90^{\circ} - \angle POS$ - (i) ↔ P  $\stackrel{+}{\circ}$ O  $\angle QOS = \angle QOR + \angle ROS = 90^{\circ} + \angle ROS$  $\Rightarrow 90^{\circ} = \angle QOS - \angle ROS$ - (ii) Substituting (ii) in (i) we get  $\angle ROS = \angle QOS - \angle ROS - \angle POS$  $\Rightarrow 2 \angle ROS = \angle QOS - \angle POS$  $\Rightarrow \angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$ Hence proved.

| If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$ ,<br>find $\angle BOE$ and reflex $\angle COE$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A O B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Given:∠BOD = 40°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Since AB and CD intersects, $\angle AOC = \angle BOD$ (vertically opposite angles)<br>$\angle AOC = 40^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Also, $\angle AOC + \angle BOE = 70^{\circ}$<br>$\Rightarrow \angle BOE = 70^{\circ} - \angle AOC = 70^{\circ} - 40^{\circ} = 30^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| We need to find reflex $\angle$ COE<br>Reflex $\angle$ COE = $360^{\circ} - \angle$ COE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Now, $\angle AOC + \angle COE + \angle BOE = 180^{\circ}$<br>$\Rightarrow \angle COE + (\angle AOC + \angle BOE) = 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| $\Rightarrow \angle \text{COE} + (40^\circ + 30^\circ) = 180^\circ$ $\Rightarrow \angle \text{COE} = 180^\circ - 70^\circ = 110^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $\text{Reflex} \angle \text{COE} = 360^\circ - 110^\circ = 250^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| <ul> <li>a. The taxi fare in a city is such that Rs 50 is fixed amount and Rs 16 per km is charged. Taking the distance covered as x km and total fare as Rs y, write a linear equation in x and y. Also, find the fare if the taxi covers 120km.</li> <li>Let Rs.y = Total fare of the journey . and let total distance covered by taxi is = x km, it is given that, fare per km is = Rs 16 so, fare of x km = 16x and it is also given that = Rs 50 is fixed amount, so, our equation algebraically is = y = 50 + 16x y - 16x = 50 now, when 120km distance is covered</li> </ul> |  |
| Total fare will be ,<br>y = 50 + 16x<br>$y = 50 + 16 \times 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |

|     | <ul> <li>b. If present age of son and father are expressed by x and y respectively and after 10 years father will be twice as old as his son. Write the relation between x and y. Also find fathers age when son is 20 years old.</li> <li>Age of son = x years <ul> <li>Age of father = y years</li> <li>After 10 years age of son = x + 10</li> <li>After 10 years age of father = y + 10</li> </ul> </li> <li>According to the condition <ul> <li>Y + 10 = 2(x + 10)</li> <li>Y - 2x = 10</li> </ul> </li> <li>When x = 20 years, age of father = 50 years</li> </ul> |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 34. | a. Find the value of k, if (x - 1) is a factor of $p(x) = 2x^2 + kx + \sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 |
|     | if x-1 is a factor of given eqn then it will satisfy this eqn ,x-1=0,<br>$p(x) = 2x^2+kx+\sqrt{2}$<br>$2+k+\sqrt{2}=0$<br>$k=-(\sqrt{2}+2)$                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 |
|     | b. Factorise: $x^3 + 13x^2 + 32x + 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|     | (iii) Let $p(x) = x^3 + 13x^2 + 32x + 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|     | We shall find a factor of $p(x)$ by using some trial value of x, say $x = -1$ .<br>(Since all the terms are positive.)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|     | $p(-1) = (-1)^3 + 13(-1)^2 + 32(-1) + 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|     | = -1 + 13 - 32 + 20 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|     | Since the remainder of $p(-1) = 0$ , by factor theorem we can say $x + 1$ is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|     | factor of $p(x) = x^3 + 13x^2 + 32x + 20$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|     | Now dividing p(x) by x + 1 using long division,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|     | $\frac{x^2 + 12x + 20}{x + 1)x^3 + 13x^2 + 32x + 20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|     | $x^{3} + x^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|     | $12x^2 + 32x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|     | $\frac{12x^2 + 12x}{20x + 20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|     | 20x + 20<br>20x + 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |





|     | b. What is the length of the outer boundary of the layout?                                                                                                               | 1 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | (a) 40m (b) 54m<br>(c) 27m (d) 48m                                                                                                                                       |   |
|     | Answer : b                                                                                                                                                               |   |
|     | c. If $y = 7m$ , what is the value of x?                                                                                                                                 | 2 |
|     | (a) 13m (b) 4m (c) 6m (d) 3m                                                                                                                                             |   |
|     | Answer : c                                                                                                                                                               |   |
| 37. | Case study:                                                                                                                                                              |   |
|     | Students of a school are standing in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in the figure. |   |
|     | 10<br>9<br>8<br>7                                                                                                                                                        |   |
|     |                                                                                                                                                                          |   |
|     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                    |   |
|     | (i) What are the coordinates of A and B respectively?                                                                                                                    | 1 |
|     | (i) What are the coordinates of A and B respectively:                                                                                                                    | Ţ |
|     | A(3,5) and B(7,9)                                                                                                                                                        |   |
|     | (ii) What is the distance between B and D?                                                                                                                               | 1 |
|     | 8 units                                                                                                                                                                  |   |
|     | (iii) What is the mirror image of coordinate A with respect to Y axis?                                                                                                   | 1 |
|     | A(-3, 5)                                                                                                                                                                 |   |
|     | (iv) If point E is (-5, -10), what is the distance of the point with respect to X axis?                                                                                  | 1 |
|     | 10 units                                                                                                                                                                 |   |
|     |                                                                                                                                                                          |   |
| 38. | Case study:                                                                                                                                                              |   |

|   | on the blackboard as per the following figure.                        |   |
|---|-----------------------------------------------------------------------|---|
|   |                                                                       |   |
|   | 1. Now he told Raju to draw another line CD as in the figure          |   |
|   | 2. The teacher told Ajay to mark $\angle AOD$ as 2z                   |   |
|   | 3. Suraj was told to mark ∠AOC as 4y                                  |   |
|   | 4. Clive Made and angle $\angle COE = 60^{\circ}$                     |   |
|   | 5. Peter marked $\angle BOE$ and $\angle BOD$ as y and x respectively |   |
|   | a. What is the value of x?                                            | 1 |
|   | 1. 48°                                                                | 1 |
|   | 2. 96°                                                                |   |
|   | 3. 100°                                                               |   |
|   | 4. 120°                                                               |   |
|   |                                                                       |   |
|   | 1. 96                                                                 |   |
|   |                                                                       |   |
|   | What is the value of y?<br>b.                                         | 1 |
|   | 1. 48°                                                                |   |
|   | 2. 96°                                                                |   |
|   | 3. 100°                                                               |   |
|   | 4. 24°                                                                |   |
|   |                                                                       |   |
|   | 4. 24                                                                 |   |
|   | C.<br>What should be the value of x + 2z?                             | 2 |
|   | 1. 148°                                                               |   |
|   | 2. 360°                                                               |   |
|   | 3. 180°                                                               |   |
|   | 4. 120°                                                               |   |
|   |                                                                       |   |
|   | 2. 180                                                                |   |
| í |                                                                       | L |