

Date: 10/11/23 GRADE: IX MONTHLY TEST -02(2023-24) MATHEMATICS Max marks: 20 Time: 50 Minutes

General Instructions:

- 1. There are 10 questions in the question paper. All questions are compulsory.
- 2. The question paper has 4 sections A, B, C and D.
- 3. Section A has 5 MCQs carrying 1 mark each.
- 4. Section B has 2 VERT SHORT ANSWER TYPE QUESTIONS carrying 2 marks each.
- 5. Section C has 2 SHORT ANSWER TYPE QUESTIONS carrying 3 marks each.
- 6. Section D has 1 LONG ANSWER TYPE QUESTION carrying 5 marks.

Qn No	SECTION A MULTIPLE CHOICE QUESTIONS	Marks Allocated
1	In ΔABC and ΔPQR three equality relations between same parts are as follows: AB=QP, <b=<p and="" bc="PR." following<br="" of="" state="" the="" which="">congruence rule applies here a) SSS b) SAS c) ASA d) RHS</b=<p>	1
2	If $\triangle ABC \cong \triangle PQR$ and $\triangle ABC$ is not congruent to $\triangle RPQ$, which of the following is not true? (a) BC=PQ (b) AB=PQ (c) AC=PR (d) QR=BC	1
3	If all the three angles of a triangle are equal, then each one of them is equal to a) 90^{0} b) 45^{0} c) 60^{0} d) 30^{0}	1

5 Which of the following is the necessary condition for a quadrilateral to be a parallelogram? 1 (a) Diagonals bisect each other. (b) Opposite angles are equal. (c) Opposite sides are equal and parallel to each other. (d) All of the above SECTION B SECTION B VERY SHORT ANSWER TYPE QUESTIONS 6 ABC and DBC are two isosceles triangles on the same base BC. 2 Show that $\angle ABD = \angle ACD$. A A A A A A A A D In $\triangle ABC$, we have AB = AC [ABC is an isosceles triangle] $\angle \angle ABC = \angle ACB(1)$ [Angles opposite to equal sides of a \triangle are equal] Again, in $\triangle BDC$, we have BD = CD [BDC is an isosceles triangle] $\angle \angle CBD = \angle BCD(2)$ [Angles opposite to equal sides of a triangle are equal] Adding (1) and (2), we have $\angle ABC + \angle CBD = \angle ACB + \angle BCD$ $\angle \angle ABC + \angle CBD = \angle ACB + \angle BCD$	4	If the diagonals of a parallelogram are equal then it is a a) Trapezium b) Kite c) Rectangle d) Rhombus	1
VERY SHORT ANSWER TYPE QUESTIONS6ABC and DBC are two isosceles triangles on the same base BC. Show that $\angle ABD = \angle ACD$.2AABCDIn $\triangle ABC$, we have $AB = AC [ABC is an isosceles triangle]\therefore \angle ABC = \angle ACB \dots (1)[Angles opposite to equal sides of a \triangle are equal]Again, in \triangle BDC, we haveBD = CD [BDC is an isosceles triangle]\therefore \angle CBD = \angle BCD \dots (2)[Angles opposite to equal sides of a triangle are equal]Adding (1) and (2), we have\angle ABC + \angle CBD = \angle ACB + \angle BCD$	5	to be a parallelogram? (a) Diagonals bisect each other. (b) Opposite angles are equal. (c) Opposite sides are equal and parallel to each other.	1
6 ABC and DBC are two isosceles triangles on the same base BC. Show that $\angle ABD = \angle ACD$.		SECTION B	
Show that $\angle ABD = \angle ACD$. A B C B C D In $\triangle ABC$, we have AB = AC [ABC is an isosceles triangle] $\therefore \angle ABC = \angle ACB \dots (1)$ [Angles opposite to equal sides of a \triangle are equal] Again, in $\triangle BDC$, we have BD = CD [BDC is an isosceles triangle] $\therefore \angle CBD = \angle BCD \dots (2)$ [Angles opposite to equal sides of a triangle are equal] $\triangle \angle CBD = \angle BCD \dots (2)$ [Angles opposite to equal sides of a triangle are equal] $\triangle dding (1) and (2)$, we have $\angle ABC + \angle CBD = \angle ACB + \angle BCD$			
	0	Show that $\angle ABD = \angle ACD$. A B C B C D In $\triangle ABC$, we have AB = AC [ABC is an isosceles triangle] $\therefore \angle ABC = \angle ACB(1)$ [Angles opposite to equal sides of a \triangle are equal] Again, in $\triangle BDC$, we have BD = CD [BDC is an isosceles triangle] $\therefore \angle CBD = \angle BCD(2)$ [Angles opposite to equal sides of a triangle are equal] Adding (1) and (2), we have	

7	Prove that a diagonal of a parallelogram divides it into two	2
	congruent triangles.	
	A	
	Let ABCD be a parallelogram and AC be a diagonal. Observe that	
	the diagonal AC divides parallelogram ABCD into two triangles,	
	namely, Δ ABC and Δ CDA. We need to prove that these triangles	
	are congruent.	
	In Δ ABC and Δ CDA, note that BC AD and AC is a transversal.	
	So, \angle BCA = \angle DAC (Pair of alternate angles)	
	Also, AB DC and AC is a transversal.	
	So, \angle BAC = \angle DCA (Pair of alternate angles) and AC = CA	
	(Common)	
	So, Δ ABC \cong Δ CDA (ASA rule)	
	or, diagonal AC divides parallelogram ABCD into two congruent	
	triangles ABC and CDA.	
	SECTION C	
	SECTION C SHORT ANSWER TYPE QUESTIONS	

C		2
8	AB is a line segment. C and D are points on opposite side of AB such	3
	that each of them is equidistant from the points A and B. Show that	
	line CD is the perpendicular bisector of AB.	
	Ă	
	AB is a line segment. C and D are points on	
	opposite sides of AB such that	
	CA = CB(i) and DA = DB(ii)	
	In ΔCAD and ΔCBD	
	CA = CB [from eqn. (i)]	
	AD = BD [from eqn. (ii)] $A = BD [from eqn. (ii)]$	
	and CD = CD [Common side]	
	$\Delta CAD \cong \Delta CBD$ [By SSS Congruence rule]	
	or, <acd <bcd="" =="" [by="" cpct]<="" th=""><th></th></acd>	
	or <aco <bco(iii)<="" =="" th=""><th></th></aco>	
	In ΔCAO and ΔCBO	
	CA = CB [from eqn. (i)]	
	<aco <bco<="" =="" math=""> [from eqn. (iii)] and</aco>	
	CO = CO [Common side]	
	$\Delta CAO \cong \Delta CBO$ [By SAS Congruence rule]	
	or, $AO = BO \dots (iv) [By CPCT]$	
	and $ [By CPCT]$	
	Since AB is a line segment, so we use the property of linear pair and	
	find the measure of ĐAOC or ĐBOC.	
	AB is a line segment.	
	So, $$	
	or, $<$ AOC + $<$ AOC= 180° [from eqn. (v)]	
	or, 2 <aoc 180°="" 2="" <aoc="180" =="" or,="" th="" °<=""><th></th></aoc>	
	or, <aoc (iv)]<="" 90°="" =="" [from="" ao="BO" eqn.="" th=""><th></th></aoc>	
	<BOC = $<$ AOC = 90° each	
9	State and prove The mid-point theorem.	3
	A	-
	\wedge \land	
	F F	
	In the figure E and F are mid-points of AB and AC respectively and	
	CD BA. \triangle AEF \cong \triangle CDF (ASA Rule)	
	So, $EF = DF$ and $BE = AE = DC$ (CPCT)	
	Therefore, BCDE is a parallelogram. (both pairs of opposite sides are	
	equal) This gives EF BC.	
	In this case, also note that $EF = 1/2 ED = 1/2 BC$.	
L		

