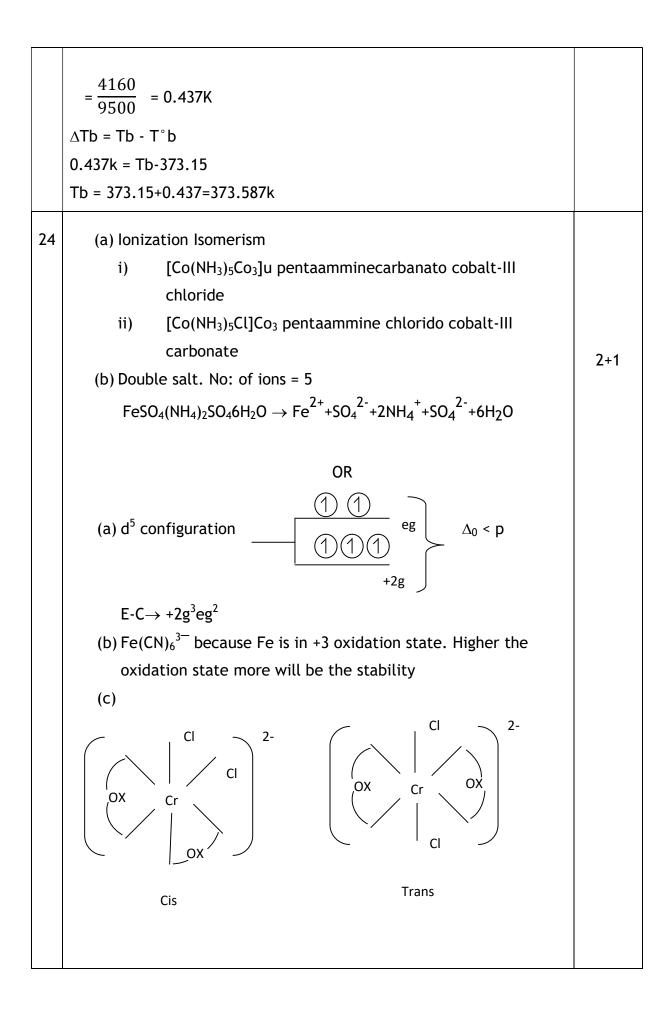
CENTRAL KERALA SAHODAYA

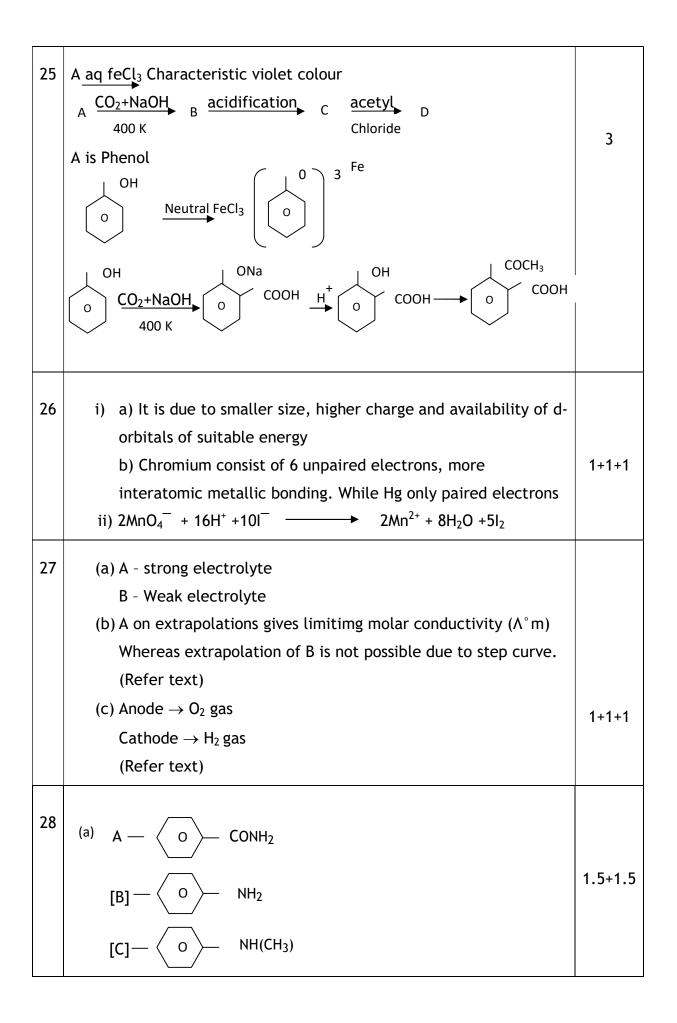
MODEL EXAMINATION 2023-2024

CLASS XII

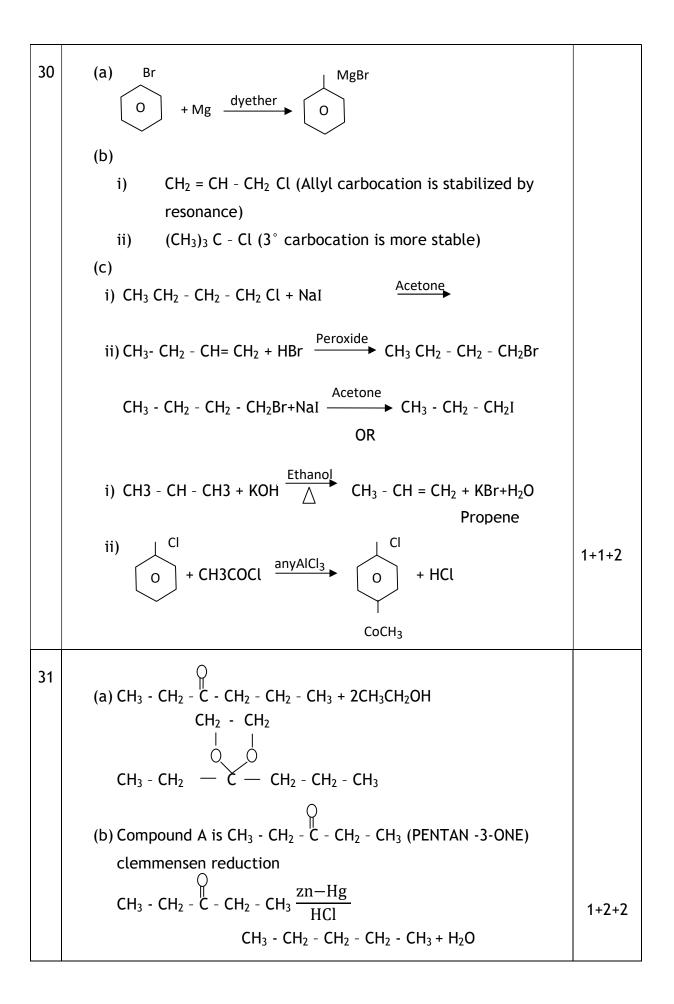
CHEMISTRY [043]

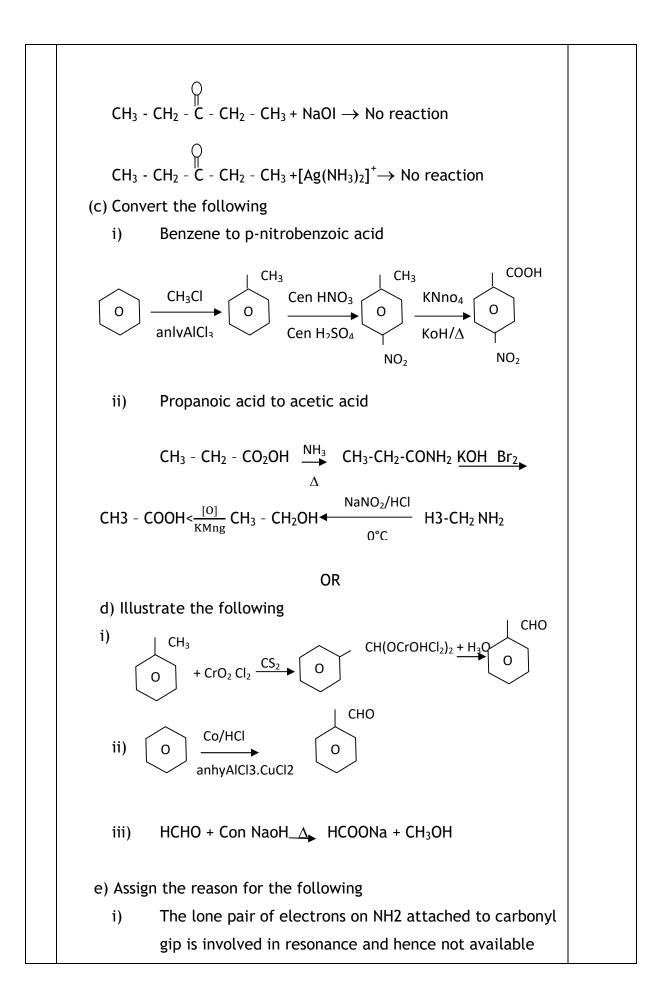
ANSWER KEY


SECTION A


٦

1	(b)1-methyl cyclohexene	1
2	(a) $[Fe(C_2O_4)_3]^{3^-}$	1
3	(c) Mostly amino acids have D-Configuration	1
4	(c) 6F	1
5	(b) phenol	1
6	(d) t = $\frac{4.606}{K}$	1
7	(c) CoCl ₃ .6NH ₃	1
8	(d) CH ₃ CH ₂ NH ₂	1
9	(a) P - (II) Q - (III) R - (IV) S - (I)	1
10	(b)IV > III > I > II	1
11	(d) 5.92 BM	1
12	(b) Etard reaction	1
13	A)	1


14	A)	1
15	D)	1
16	B)	1
17	(i) $(Ti^{4^+})^p$ because of the losing 4 electron there is no unpaired electrons $[3d^{\circ}4S^{\circ}]$ (ii) Cu^+ gets oxidized to Cu^{2^+} which is more stable due to higher ΔH enthalpy hydration.	1+1
18	 (a) [Fe(CN)₆]^{4⁻} does not have unpaired electrons whereas [Fe(H₂O)₆]^{2⁺} are of has unpaired electrons and absorb light from visible region and radiates complementary colour. (b) K₂[Ni(CN)₄] 	1+1
19	Give reason (a) Aniline is strong acidic medium changes in to anilium ion I = I = I = I = I = I = I (b) Ammonolysis has the disadvantage of yielding a mixture of primary, secondary and tertiary amines and a quaternary OR (a) $I = I = I = I = I = I = I$ (b) $I = I = I = I = I = I = I = I = I$ (b) $I = I = I = I = I = I = I = I = I = I $	1+1


		1
20	K = 60/S	
	$K = \frac{2.303}{t} \log \frac{[Ro]}{[R]}$	
	<u>Ro</u>	
	$60 = \frac{2.303}{t} \log \frac{\text{Ro}}{16}$	2
	$60 = \frac{2.303}{t} \log 16$	
	$t = \frac{2.303}{60} \times 1.2042$	
	= 0.046 sec	
21	(a) n-Butane < methoxymethane < propanal < Acetone < 1-propanol	2
	(b) propanone < Acetone < propanal < Acetaldehyde	Z
22	(a) $A+2B \rightarrow pdt$	
	$\frac{-d[A]}{dt} = \frac{-1}{2} d \frac{[B]}{dt}$	
	(b) Concentration of B three times	1+1+1
	rate = K[A][B] ²	
	rate = $K[A][3B]^2$	
	rate = 9 times	
	(c) Both A and B doubled	
	rate = $K[2A][2B]^2$	
	= 8 times	
23	w ₂ x 1000	2
	$\Delta Tb = iKb \frac{w_2 \mathrm{x} 1000}{M_2 \mathrm{x} w_i}$	3
	$\Delta Tb = Tb - T^{\circ}b$	
	$Mg SO_4 \longrightarrow Mg^{2+} + SO_4^{2-}$	
	l = 2 (kb = 0.52 kkg/mol)	
	$w_2 = 4g w_1 = 100g$	
	$M_2 = 24 + 2 \times 35.5$	
	= 24+71 = 95g/mol	
	$\Delta Tb = \frac{2x0.52x4x1000}{27-100}$	
	95x100	

	(b)	[A]	CH ₃ CH ₂ CN	
		[B]	CH ₃ -CH ₂ NH ₂	
			CH ₃ -CH ₂ CH ₂ OH	
		[0]		
29	(a) Exot	thermic because force of attraction between gas and	
		solve	ent increases on dissolution	
	(b) k_H value increases with increase in temperature. Helium is			
	least soluble because its k_H is highest			
	(c) p = k	_{KH} X _{N2}	
		X _{N2} =	$\frac{p_{N2}}{k_H} = \frac{0.987 \text{ bar}}{7.6480 \text{ x}^{-4} \text{ bar}}$	
			$= 1.29 \times 10^{-5}$	
		X _{N2} =	$\frac{n_{N2}}{n_{N2}+nH_2O}$	
		X _{N2} =	$=\frac{n_{N2}}{n_{N2}+55.5}$	
		X _{N2} =	$=\frac{n_{N2}}{nH_2O}$	1+1+2
		X _{N2} =	$X_{N2} \times NH_2O = 1.29 \times 10^{-5} \times 55.5$	1+1+2
		=	= 7.16x10 ⁴ moles	
		=	= 0.716 millimole	
			OR	
		0.19	5mmeans 0.195 moles of H_2S is dissolved in 1kg of H_2O .	
		X _{H2} S	$=\frac{nH_2S}{nH_2S+nH_2O}$	
			$=\frac{0.195}{0.195+55.55}=0.0035$	
		$P_{H2}S$	at STP = 0.987bar	
		$P_{H2}S$	$= K_H \times YH_2S$	
		K _H =	$\frac{PH_2S}{xH_2S} = \frac{0.987}{0.0035} = 282bar$	

	for the reaction H ₂ N-NH → C→ NH ₂ ii) Benzoic acid do not undergo friedel crafts reaction because the carboxyl group is deactivating and the catalyst aluminium chloride [Lewis acid] gets bonded to the carboxyl group	
32	(a) $E_{cell} = E_{cell}^{\circ} - \frac{0.059}{n} \log E_{cell} = 2 - \frac{0.059}{6} \log \frac{[Al^{3+}]}{[Cu^{2+}]^3}$	
	$E_{cell} = 2 - \frac{0.059}{6} \log \frac{[0.01]^2}{[0.01]^3}$ $= 2 - \frac{0.059}{6} \log \frac{1 \times 10^{-2}}{1 \times 10^{-6}}$	3+1+1
	$2 - \frac{0.059}{6} \log 10^{+4}$ $2 - \frac{0.059}{6} 4 \log 10$ $= 2 - \frac{0.059}{6} \times 4$ $\frac{12 - 0.059}{6} \times 4$ $\frac{11.941}{6} \times 42 = \underline{7.96V}$	
	 (b) Mercury will always potential remains constant because the overall reaction does not involve any ion in solution whose concentration can change during its life time. (c) 38% solution of sulphuric acid is used as electrolyte 	
	OR	

	(d) When direct current is passed, it changes the composition of	
	the solution .	
	(e) Amount of nickel deposited	
	W = ZIt	
	$Ni(NO3)_2 \rightarrow Ni^{2+} + 2NO_3^{-}$	
	$W = \frac{58.7}{2x9} \times 5x20x60$	
	$=\frac{352200}{193000}=\underline{1.82g}$	
	(f) Reactivity decreases as electrode potential increase	
	Decreasing order of reactivity	
	-1.66V > -0.14V > + 0.34V > + 0.80V	
33	(a) Saccharic acid	
	(b) Sugar, base and phosphate	
	(c) Guanine and cytosine	
	(d) Hydrogen bond, disulphide linkages Van der Waals and	
	electrostatic forces of attraction	
	(e) RNA helps in protein synthesis	5x1=5
	(f) It indicate the absence of free CHO group	5/1-5
	(g) During denaturation secondary and tertiary structures are	
	destroyed	